Cronni Plasma o Bositronau


Cronni Plasma o Bositronau
(Positron Plasma Accumulation)

Hywel Turner Evans & Aled Isaac

A review of the process of accumulating a positron (antielectron) plasma is presented. Positron sources and techniques to moderate, accumulate and characterise positrons are described, with examples of data collected using the positron beamline at Swansea University. Motivation is given for studying antimatter to explain the composition of the universe, in addition to some historical context. The use of positrons beyond research in fundamental physics is also discussed.


Reference:

 
  	Hywel Turner Evans & Aled Isaac, ‘Cronni Plasma o Bositronau’, Gwerddon, 33, October 2021, 55–67.
   

Keywords

 
    Physics, antimatter, positron, accumulation, plasma, non-neutral.
    

Bibliography:

 
  	
  1. ALPHA,  <http://alpha.web.cern.ch>[Cyrchwyd: 30 Hydref 2020].
  2. Amoretti, M., et al. (2002), ‘Production and detection of cold antihydrogen atoms’, Nature, 419 (6906), 456–9.
  3. Anderson, C. D. (1933), ‘The positive electron’, Physical Review, 43, 491–4.
  4. Briggs, M. S., et al. (2011), ‘Electron-positron beams from terrestrial lightning observed with fermi gbm’, Geophysical Research Letters, 38 (2).
  5. Cassidy, D. B. (2018), ‘Experimental progress in positronium laser physics’, European Physical Journal D, 72 (3).
  6. Cassidy, D. B. a Mills, A. P. (2007), ‘The production of molecular positronium’, Nature, 449 (7159), 195–7.
  7. Charlton, M., et al. (2013), ‘Gwrth-hydrogen mewn potel (supplementary data)’, Physics Education, 48 (2), 212–20.
  8. Clarke, J., et al. (2006), ‘Design and operation of a two-stage positron accumulator’, Review of Scientific Instruments, 77 (6), 063302.
  9. Coleman, P. (2000), Positron Beams and Their Applications, (World Scientific).
  10. de Swart, J. G., Bertone, G., a van Dongen, J. (2017), ‘How dark matter came to matter’, Nature Astronomy, 1 (3), 0059.
  11. Deller, A, ‘Positron accumulation and laser excitation of the positronium atom’, Traeth- awd PhD, Prifysgol Abertawe, 2013.
  12. Deller, A. (2019), ‘SSPALS: A tool for studying positronium’ Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 922, 91–7.
  13. Dirac, P. A. M. (1931), ‘Quantised singularities in the electromagnetic field’, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 133 (821), 60–72.
  14. Enomoto, Y., et al. (2010), ‘Synthesis of cold antihydrogen in a cusp trap’, Physical Review Letters, 105 (24), 1–4.
  15. Farrar, G. R. a Shaposhnikov, M. E. (1993), ‘Baryon asymmetry of the universe in the minimal standard model’, Physical Review Letters, 71 (1), 210.
  16. Gabrielse, G., et al. (2002), ‘Background-free observation of cold antihydrogen with field-ionization analysis of its states’, Physical Review Letters, 89 (21), 2–5.
  17. GBAR,  <http://gbar.web.cern.ch>[Cyrchwyd: 30 Hydref 2020].
  18. Isaac, C. A. (2013), ‘Motional sideband excitation using rotating electric fields’, Physical Review A, 87 (4), 1–7.
  19. Isaac, C. A., et al. (2011), ‘Compression of positron clouds in the independent particle regime’, Physical Review Letters, 107 (3).
  20. Knoll, G. F. (2010), RadiationDetection and Measurement, (Wiley).
  21. Mills, A. P., Cassidy, D. B., a Greaves, R. G. (2004), ‘Prospects for making a Bose- Einstein-condensed positronium annihilation gamma ray laser’, Materials Science Forum, 445–6, 424–9.
  22. Mills, A. P. a Gullikson, E. M. (1986), ‘Solid neon moderator for producing slow pos- itrons’, Applied Physics Letters, 49 (17), 1121–3.
  23. Murphy, T. J. a Surko, C. M. (1992), ‘Positron trapping in an electrostatic well by inelastic collisions with nitrogen molecules’, Physical Review A, 46, 5696–705.
  24. Peebles, P. J. E. a Ratra, B. (2003), ‘The cosmological constant and dark energy’, Reviews of Modern Physics, 75(2), 559–606.
  25. P´erez, et al. (2015), ‘The GBAR antimatter gravity experiment’, HyperfineInteractions, 233 (1-3), 21–7.
  26. Sarri, G., et al. (2013), ‘Table-top laser-based source of femtosecond, collimated, ultrar- elativistic positron beams’, Physical Review Letters, 110, 255002.
  27. Schultz, P. J. a Lynn, K. G. (1988), ‘Interaction of positron beams’, Reviews of Modern Physics, 60 (3), 701–79.
  28. Siegel, R. W. (1980), ‘Positron Annihilation Spectroscopy’, Annual Review of Materials Science, 10 (1), 393–425.
  29. Vehanen, A., et al. (1983), ‘Improved slow-positron yield using a single crystal tungsten moderator’, Applied Physics A, 32 (3), 163–7.
  30. Wardle, J. F. C., et al. (1998), ‘Electron-positron jets associated with the quasar 3C279’, Nature, 395 (6701), 457–61.