Bibliography:
- ALPHA, <http://alpha.web.cern.ch>[Cyrchwyd: 30 Hydref 2020].
- Amoretti, M., et al. (2002), ‘Production and detection of cold antihydrogen atoms’, Nature, 419 (6906), 456–9.
- Anderson, C. D. (1933), ‘The positive electron’, Physical Review, 43, 491–4.
- Briggs, M. S., et al. (2011), ‘Electron-positron beams from terrestrial lightning observed with fermi gbm’, Geophysical Research Letters, 38 (2).
- Cassidy, D. B. (2018), ‘Experimental progress in positronium laser physics’, European Physical Journal D, 72 (3).
- Cassidy, D. B. a Mills, A. P. (2007), ‘The production of molecular positronium’, Nature, 449 (7159), 195–7.
- Charlton, M., et al. (2013), ‘Gwrth-hydrogen mewn potel (supplementary data)’, Physics Education, 48 (2), 212–20.
- Clarke, J., et al. (2006), ‘Design and operation of a two-stage positron accumulator’, Review of Scientific Instruments, 77 (6), 063302.
- Coleman, P. (2000), Positron Beams and Their Applications, (World Scientific).
- de Swart, J. G., Bertone, G., a van Dongen, J. (2017), ‘How dark matter came to matter’, Nature Astronomy, 1 (3), 0059.
- Deller, A, ‘Positron accumulation and laser excitation of the positronium atom’, Traeth- awd PhD, Prifysgol Abertawe, 2013.
- Deller, A. (2019), ‘SSPALS: A tool for studying positronium’ Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 922, 91–7.
- Dirac, P. A. M. (1931), ‘Quantised singularities in the electromagnetic field’, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 133 (821), 60–72.
- Enomoto, Y., et al. (2010), ‘Synthesis of cold antihydrogen in a cusp trap’, Physical Review Letters, 105 (24), 1–4.
- Farrar, G. R. a Shaposhnikov, M. E. (1993), ‘Baryon asymmetry of the universe in the minimal standard model’, Physical Review Letters, 71 (1), 210.
- Gabrielse, G., et al. (2002), ‘Background-free observation of cold antihydrogen with field-ionization analysis of its states’, Physical Review Letters, 89 (21), 2–5.
- GBAR, <http://gbar.web.cern.ch>[Cyrchwyd: 30 Hydref 2020].
- Isaac, C. A. (2013), ‘Motional sideband excitation using rotating electric fields’, Physical Review A, 87 (4), 1–7.
- Isaac, C. A., et al. (2011), ‘Compression of positron clouds in the independent particle regime’, Physical Review Letters, 107 (3).
- Knoll, G. F. (2010), RadiationDetection and Measurement, (Wiley).
- Mills, A. P., Cassidy, D. B., a Greaves, R. G. (2004), ‘Prospects for making a Bose- Einstein-condensed positronium annihilation gamma ray laser’, Materials Science Forum, 445–6, 424–9.
- Mills, A. P. a Gullikson, E. M. (1986), ‘Solid neon moderator for producing slow pos- itrons’, Applied Physics Letters, 49 (17), 1121–3.
- Murphy, T. J. a Surko, C. M. (1992), ‘Positron trapping in an electrostatic well by inelastic collisions with nitrogen molecules’, Physical Review A, 46, 5696–705.
- Peebles, P. J. E. a Ratra, B. (2003), ‘The cosmological constant and dark energy’, Reviews of Modern Physics, 75(2), 559–606.
- P´erez, et al. (2015), ‘The GBAR antimatter gravity experiment’, HyperfineInteractions, 233 (1-3), 21–7.
- Sarri, G., et al. (2013), ‘Table-top laser-based source of femtosecond, collimated, ultrar- elativistic positron beams’, Physical Review Letters, 110, 255002.
- Schultz, P. J. a Lynn, K. G. (1988), ‘Interaction of positron beams’, Reviews of Modern Physics, 60 (3), 701–79.
- Siegel, R. W. (1980), ‘Positron Annihilation Spectroscopy’, Annual Review of Materials Science, 10 (1), 393–425.
- Vehanen, A., et al. (1983), ‘Improved slow-positron yield using a single crystal tungsten moderator’, Applied Physics A, 32 (3), 163–7.
- Wardle, J. F. C., et al. (1998), ‘Electron-positron jets associated with the quasar 3C279’, Nature, 395 (6701), 457–61.