‘Tyrfedd yng ngwynt yr Haul’

‘Tyrfedd yng ngwynt yr Haul’
(Turbulence in the solar wind)

Owen Wyn Roberts

The Cluster spacecraft are used in order to investigate the solar wind, and because there are four spacecraft, it allows a measurement of the 3-D structure of the solar wind. Since turbulence is a 3-D phenomenon, Cluster is ideal for investigating turbulence. These observations show that the turbulence at proton gyration scales are dominated by Kinetic Alfvén waves as well as magnetic vortices. This research strengthens the hypothesis that Kinetic Alfvén waves are present in the solar wind and suggests for the first time that waves and magnetic vortices can coexist in the solar wind.


  	Owen Wyn Roberts, Xing Li & Bo Li, 'Tyrfedd yng ngwynt yr Haul', Gwerddon, 19, April 2015, 45-58.


    Turbulence, solar wind, waves.


  1. Alexandrova, O., a Saur, J. (2008), ‘Alfvén Vortices in Saturn’s Magnetosheath: Cassini Observations’, Geophysical Research Letters, 35 (15), L15102.
  2. Alexandrova, O., Mangeney, A., Maksimovic, M., et al. (2006), ‘Alfvén Vortex Filaments Observed in Magnetosheath Downstream of a Quasi-perpendicular Bow Shock’, Journal of Geophysical Research, 111, A12208.
  3. Balogh, A., Carr, C. M., Acuna, M. H., et al. (2001), ‘The Cluster Magnetic Field Investigation: Overview of In-flight Performance and Initial Results’, Annales Geophysicae, 19, 1207–17.
  4. Biermann, L. (1951), ‘Kometenschweife und solare Korpuskularstrahlung’, Zeitschrift für Astrophysik, 29, 274–86.
  5. Birkeland, K. (1913), The Norwegian Aurora Polaris Expedition 1902-1903 (Christiania: Aschehoug).
  6. Escoubet, C. P., Fehringer, M., a Goldstein, M. (2001), ‘Introduduction: The Cluster Mission’, Annales Geophysicae, 19, 1197–200.
  7. Frisch, U. (1995), Turbulence: The Legacy of A. N. Kolmogorov (Cambridge: Cambridge University Press).
  8. Grant, H. L., Stewart, R. W., a Moilliet, A. (1962), ‘Turbulence Spectra from a Tidal Channel’, Journal of Fluid Mechanics, 12, 241–68.
  9. Gringauz, K. I., Bezrukikh, V. V., Ozerov, V. D., et al. (1962), ‘The Study of Interplanetary Ionized Gas, High-Energy Electrons and Corpuscular Radiation of the Sun, Employing Three-Electrode Charged Particle Traps on the Second Soviet Space Rocket’, Planetary and Space Science, 9, 103–7.
  10. Hasegawa, H., Fujimoto, M., Phan, T. D., et al. (2004), ‘Transport of Solar Wind into Earth’s Magnetosphere through Rolled-up Kelvin-Helmholtz Vortices’, Nature, 430 (7001), 755–8.
  11. Kolmogorov, A. N. (1941), ‘On the Degeneration of Isotropic Turbulence in an Incompressible Viscous Fluid’, Doklady Akademii Nauk SSSR, 32, 19–21.
  12. Kolmogorov, A. N. (1991a), ‘Dissipation of Energy in the Locally Isotropic Turbulence’, Proceedings of the Royal Society, 434 (1890), 15–17.
  13. Kolmogorov, A. N. (1991b), ‘The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Numbers’, Proceedings of the Royal Society, 434 (1890), 9–13.
  14. Morgan, H. (2012), ‘Corona’r Haul: Astudiaeth o Strwythur Atmosffer yr Haul’, Gwerddon10/11, 64–82.
  15. Mullin, T. (2011), ‘Experimental Studies of Transition to Turbulence in a Pipe,’ Annual Review of Fluid Mechanics, 43, 1–24.
  16. Neugebauer, M., a Snyder, C. W. (1962), ‘Solar Plasma Experiment’, Science, 138, 1095–7.
  17. Narita, Y., Gary, S. P., Saito, S., et al. (2011), ‘Dispersion Relation Analysis of Solar Wind Turbulence’, Geophysical Research Letters, 38, L05101.
  18. Parker, E. N. (1958), ‘Dynamics of the Interplanetary Gas and Magnetic Fields’, The Astrophysical Journal, 128, 664–76.
  19. Petviashvili, V., a Pokhotelov, O. A. (1992), Solitary Waves in Plasmas and in the Atmosphere (Amsterdam: Gordon & Breach Science Publisher).
  20. Perri, S., Goldstein, M., Dorelli, J., et al. (2012), ‘Detection of Small-Scale Structures in the Dissipation Regime of Solar-Wind Turbulence’, Physical Review Letters, 109, 191101.
  21. Pincon, J. L., a Lefeuvre, F. (1991), ‘Local Characterization of Homogeneous Turbulence in a Space Plasma from Simultaneous Measurements of Field Components at Several Points in Space’, Journal of Geophysical Research, 96, 1789–802.
  22. Reynolds, O. (1883), ‘Experimental Investigation of the Circumstances which Determine whether the Motion of Water shall be Direct or Sinuous, and of the Law of Resistance in Parallel’, Philosophical Transactions of the Royal Society of London, 174, 935–82.
  23. Robert, P., Roux, A., Harvey, C., et al. (1998), ‘Tetrahedron Geometric Factors’, yn Paschmann, G., a Daly, P. (goln), Analysis Methods for Multi-Spacecraft Data (Bern: ISSI), tt. 323–30.
  24. Roberts, O. W., Li, X., a Li, B. (2013), ‘Kinetic Plasma Turbulence in the Fast Solar Wind Measured By Cluster’, The Astrophysical Journal, 769, 58.
  25. Sahraoui, F., Goldstein, M., Belmont, G., et al. (2010), ‘Three Dimensional Anisotropic κ Spectra of Turbulence at Subproton Scales in the Solar Wind’, Physical Review Letters, 105, 131101.
  26. Salem, C. S., Howes, G. G., Sundkvist, D., et al. (2012), ‘Identication of Kinetic Alfvén Wave Turbulence in the Solar Wind’, The Astrophysical Journal Letters, 745, L9.
  27. Sridhar, S., a Goldreich, P. (1994), ‘Toward a Theory of Interstellar Turbulence. 1: Weak Alfvénic Turbulence’, The Astrophysical Journal, 432, 612–21.
  28. Sundkvist, D., Krasnoselskikh, V., Shukla, P. K., et al. (2005), ‘In Situ: Multi-satellite Detection of Coherent Vortices as a Manifestation of Alfvénic Turbulence’, Nature, 436, 825–8.
  29. Torrence, C., a Compo, G. P. (1998), ‘A Practical Guide to Wavelet Analysis’, Bulletin of the American Meteorological Society, 79, 61–78.
  30. Volwerk, M., Louarn, P., Chust, T., et al. (1996), ‘Solitary Kinetic Alfvén Waves: A Study of the Poynting Flux’, Journal of Geophysical Research, 101, 13335.