A yw peptidau bach yn ffynhonnell maeth i briddoedd a phlanhigion yr Antarctig forwrol?

A yw peptidau bach yn ffynhonnell maeth i briddoedd a phlanhigion yr Antarctig forwrol?
Paula Roberts

Nitrogen (N) yw’r prif gemegolyn sy’n rheoli twf planhigion. Yn yr ugain mlynedd diwethaf mae ein dealltwriaeth o ba rywogaethau o N sy’n bwysig ar gyfer twf planhigion wedi datblygu’n sylweddol ond y gred yw bod rhaid i folecylau nitrogenus mawr gael eu torri i lawr i asidau amino unigol er mwyn i blanhigion a microbau eu defnyddio. Mae’r erthygl hon yn adeiladu ar ein dealltwriaeth ac yn awgrymu bod peptidau bach yr un mor bwysig fel maeth ar gyfer ffyniant microbau’r pridd ac mai’r microbau hynny sy’n ennill y gystadleuaeth am N toddedig ym mhriddoedd yr Antarctig dymherol.


  	Paula Roberts, 'A yw peptidau bach yn ffynhonnell maeth i briddoedd a phlanhigion yr Antarctig forwrol?', Gwerddon, 13, Chwefror 2013, 29-47.


    Nitrogen toddadwy, maeth planhigion, mwyneiddio microbaidd, cystadleuaeth am faeth, ymlediad planhigion.


  1. Bardgett, R. D., Streeter, T., Bol, R. (2003), ‘Soil microbes compete effectively with plants for organic nitrogen inputs to temperate grasslands’, Ecology, 84, 1277–87.
  2. Bekku, Y. S., Nakatsubo, T., Kume, A., et al. (2004), ‘Soil microbial biomass, respiration rate, and temperature dependence on a successional glacier foreland in Ny-Alesund, Svalbard’, Arctic Antarctic and Alpine Research, 36, 395-9.
  3. Boddy, E., Hill, P. W., Farrar, J., et al. (2007), ‘Fast turnover of low molecular weight components of the dissolved organic carbon pool of temperate grassland field soils’, Soil Biology and Biochemistry, 39, 827–35.
  4. Boddy, E., Roberts, P., Hill, P.W., et al. (2008), ‘Fast turnover of low molecular weight DOC in Arctic tundra soils’, Soil Biology & Biochemistry, 40, 1557-66.
  5. Box, J. D. (1983), ‘Investigation of the Folin-Ciocalteau phenol reagent for the determination of polyphenolic substances in natural waters’, Water Research, 17, tt. 511-25.
  6. Chapin, F. S., Moilanen, L., a Kielland, K. (1993), ‘Preferential use of organic N for growth by a nonmycorrhizal arctic sedge’, Nature, 361, 150.
  7. Chapin, F. S. (1995), ‘A new cog in the nitrogen cycle’, Nature, 377, 199-200.
  8. Davey, M. C., a Rothery, P. (1992), ‘Factors causing the limitation of growth of terrestrial algae in maritime Antarctica during late summer’, Polar Biology , 12, 595-601.
  9. Downes, M. T. (1978), ‘An improved hydrazine reduction method for the automated determination of low nitrate levels in freshwater’, Water Research, 12, 673-5.
  10. Fitzhugh, R. D., Driscoll, C. T., Groffman, P. M., et al. (2001), ‘Effects of soil freezing disturbance on soil solution nitrogen, phosphorus, and carbon chemistry in a northern hardwood ecosystem’, Biogeochemistry, 56, 215-38.
  11. Giesler, R., a Lundström U. (1993), ‘Soil Solution Chemistry – Effects of Bulking Soil Samples’, Soil Science Society of America Journal, 57, 1283-8.
  12. Hodge, A., Stewart, J., Robinson, D., et al. (1998), ‘Root proliferation, soil fauna and plant nitrogen capture from nutrient-rich patches in soil’, New Phytologist, 139, 479-94.
  13. Hopkins, D. W., Sparr, A. D., Novis, P. M., et al. (2006) ‘Controls on the distribution of productivity and organic resources in Antarctic Dry Valley soils’, Proceedings Of The Royal Society B, 273, 2687-2695.
  14. Huntley, B. a Cramer, W. (1997), ‘Arctic ecosystems and environmental change: Perceptions from the past and predictions for the future’, yn Crawford, R. M. M. (gol.), Disturbance and recovery in Arctic lands: an ecological perspective, Proceedings of the NATO Advanced Research Workshop on Disturbance and Recovery of Artic Terrestrial Ecosystems, Medi 24-30 1995, Rovaniemi, Ffindir (Dordrecht: Kluwer Academic Publishers, Springer-Verlag), tt. 1-24.
  15. Jones, D. L. a Darrah, P. (1994), ‘Amino-acid influx at the soil-root interface of Zea mays L. and its implications in the rhizosphere’, Plant and Soil, 163, 1-12.
  16. Jones, D. L. a Hodge, A. (1999), ‘Biodegradation kinetics and sorption reactions of three differently charged amino acids in soil and their effect on plant organic nitrogen availability’, Soil Biology & Biochemistry, 31, 1331-42.
  17. Jones, D. L. (1999), ‘Amino acid biodegradation and its potential effects on organic nitrogen capture by plants’, Soil Biology & Biochemistry, 31, 613-22.
  18. Jones, D. L. a Kielland, K. (2001), ‘Soil amino acid turnover dominates the nitrogen flux in permafrost-dominated taiga forest soils’, Soil Biology & Biochemistry, 34, 209-19.
  19. Jones, D. L., Owen, A. G. a Farrar, J. F. (2002), ‘Simple method to enable the high resolution determination of total free amino acids in soil solutions and soil extracts’, Soil Biology & Biochemistry, 34, 1892-1902.
  20. Jones, D. L., Healey, J. R., Willett, V. B., et al. (2005), ‘Dissolved organic nitrogen uptake by plants – an important N uptake pathway?’, Soil Biology & Biochemistry, 37, 413-23.
  21. Kähler, P., Bjornsen, P. K., Lochte, K. et al. (1997), ‘DOM and its utilization by bacteria during spring in the Southern Ocean’, Deep Sea Research, 44, 341-53.
  22. Kielland, K. (1994), ‘Amino-acid-absorption by arctic plants – implications for plant nutrition and nitrogen cycling’, Ecology, 75, 2373-83.
  23. Kuzyakov, Y. a Jones, D. L. (2006), ‘Glucose uptake by maize roots and its transformation in the rhizosphere’, Soil Biology & Biochemistry, 38, 851-60.
  24. Lipson, D. A., a Monson, R. K. (1998), ‘Plant-microbe competition for soil amino acids in the alpine tundra: effects of freeze-thaw and dry-rewet events’, Oecologia, 113, 406-14.
  25. Mulvaney, R. L. (1996), ‘Nitrogen – inorganic forms’, yn Sparks, D. L. (gol.), Methods of Soil Analysis. Part 3. Chemical Methods (Madison, Wisconsin: SSSA Book Series, 5), tt. 1123-84.
  26. Näsholm, T., Huss-Danell, K., a Hogberg, P. (2001), ‘Uptake of glycine by field grown wheat’, New Phytologist, 150, 59-63.
  27. Neff, J. C., Chapin, F. S. a Vitousek, P. M. (2003), ‘Breaks in the cycle: dissolved organic nitrogen in terrestrial ecosystems’, Frontiers in Ecology and the Environment, 1, 205-11.
  28. Oechel, W. C., Cook, A. C., Hastings, S. J., et al. (1997), ‘Effects of CO2 and climate change on arctic ecosystems’, yn Woodin, S. J. a Marquiss, M. (goln.), Ecology of Arctic Environments (Rhydychen: Blackwell Science), tt. 255-74.
  29. Owen, A. G. a Jones, D. L. (2001), ‘Competition for amino acids between wheat roots and rhizosphere microorganisms and the role of amino acids in plant N acquisition’, Soil Biology & Biochemistry, 33, 651-7.
  30. Payne, J. W. a Gilvarg, C. (1968), ‘Size restriction on peptide utilization in Escherichia coli’, The Journal of Biological Chemistry, 243, 6291-9.
  31. Payne, J. W. (1972), ‘Mechanisms of bacterial peptide transport’, yn Elliott, K. ac O’Connor, M., (goln.), Peptide transport in bacterial and mammalian guts, Ciba Foundation Symposium 4 (Amsterdam: Associated Scientific Publishers), tt. 17-32.
  32. Payne, J. W. a Bell, G. (1979), ‘Direct determination of the properties of peptide transport systems in Escherichia coli, using fluorescent-labelling procedure’, Journal of Bacteriology, 137, 447-55.
  33. Payne, J. W. (1980), ‘Transport and Utilization of Peptides by Bacteria’, yn Payne, J.W. (gol.), Microorganisms and nitrogen sources (Efrog Newydd: John Wiley and Sons), tt. 212-48.
  34. Perakis, S. S. a Hedin, L. O. (2002), ‘Nitrogen loss from unpolluted South American forests mainly via dissolved organic compounds’, Nature, 415, 416-19.
  35. Quayle, W. C., Peck, L. S., Peat, H., et al. (2001), ‘Extreme responses to climate change in Antarctic lakes’, Science, 295, 645.
  36. Roberts, P., Bol, R. a Jones, D. L. (2007), ‘Free amino sugar reactions in relation to soil carbon and nitrogen cycling’, Soil Biology and Biochemistry, 39, 3081-92.
  37. Roberts, P., Newsham, K. K., Bardgett, R. D., et al. (2009), ‘Vegetation cover regulates the quantity, quality and temporal dynamics of dissolved organic carbon and nitrogen in Antarctic soils’, Polar Biology, 32, 999-1008.
  38. Roberts, P. a Jones, D. L. (2012), ‘Microbial and plant uptake of free amino sugars in grassland soils’, Soil Biology & Biochemistry, 49, 139-49.
  39. Schobert’ C. a Komor, E. (1987), ‘Amino-acid-uptake by ricinus-communis roots – characterization and physiological significance’, Plant Cell and Environment, 10, 493- 500.
  40. Schimel, J., a Chapin, F.S. (1996), ‘Tundra plant uptake of amino acid and NH4+ nitrogen in situ: Plants compete well for amino acid N.’, Ecology, 77, 2142-7.
  41. Smith, J. L. a Doran, J.W. (1996), ‘Measurement and use of pH and electrical conductivity’, yn Doran, J.W., Jones, A. J. (goln.), Methods for assessing soil quality (Madison, Wisconsin: SSSA Special Publications, 49), tt. 169-86.
  42. Stevenson, F. J. (1982), ‘Organic forms of soil nitrogen’, yn Stevenson, F. J. (gol.), Nitrogen in agricultural soils, (Madison, Wisconsin: American Society of Agronomy, Monograph, 22), tt. 67-122.
  43. Ström, L., Owen, A. G., Godbold, D. L., et al. (2001), ‘Organic acid behaviour in a calcareous soil: sorption reactions and biodegradation rates’, Soil Biology & Biochemistry, 33, 2125-33.
  44. Thomas, D. N., Kennedy, H., Kattner, G., et al. (2001), ‘Biogeochemistry of platelet ice: its influence on particle flux under fast ice in the Weddell Sea, Antarctica’, Polar Biology, 24, 486-96.
  45. van Hees, P. A. W., Jones, D. L., Finlay, R., et al. (2005), ‘The carbon we do not see – the impact of low molecular weight compounds on carbon dynamics and respiration in forest soils: a review’, Soil Biology & Biochemistry, 37, 1-13.
  46. Vinolas, L. C., Healy, J. R. a Jones, D. L. (2001), ‘Kinetics of soil microbial uptake of free amino acids’, Biology and Fertility of Soil, 33, 67-74.
  47. Walker, J. R. ac Altman, E. (2005), ‘Biotinylation facilitates the uptake of large peptides by Escherichia coli and other gram-negative bacteria’, Applied and Environmental Microbiology, 71, 1850-5.