Cynllunio ‘Laser Tonfedd Ddeuol’

Cynllunio ‘Laser Tonfedd Ddeuol’
(Design of a ‘Dual Wavelength Laser’)

Daniel Roberts & Iestyn Pierce

This article is based upon the idea of designing a laser that can emit light at two different wavelengths, at the same time. This kind of laser has already been produced in the past; however, the difference between the two wavelengths was much larger. We intend to reduce this difference, while still being able to emit at two different wavelengths. This article will also address the effects of linewidth broadening where it is important to know how close the two wavelengths can be before we only see one broad peak in the spectrum, rather than two individual narrow peaks. Doing this will allow us to generate terahertz radiation from just one laser source.


  	Daniel Roberts & Iestyn Pierce, ‘Cynllunio “Laser Tonfedd Ddeuol”’, Gwerddon, 22, October 2016, 75–93.


    Laser, VCSEL, VECSEL, terahertz, dual wavelength, linewidth, electronic, Leinonen, Schawlow-Townes, Charles Henry.




  1. Badilita, V., Carlin, J. F., Ilegems, M., et al. (2004), ‘Rate-equation model for coupledcavity surface-emitting lasers’, IEEE Journal of Quantum Electronics, 40 (12), 1646–56.
  2. Carlin, J. F., Stanley, R. P., Pellandini, P., et al. (1999), ‘The dual wavelength bi-vertical cavity surface emitting laser’, Applied Physics Letters, 75 (7) 908–10.
  3. Coldren, L. A. a Corzine, S. W. (1995), Diode Lasers and Photonic Integrated Circuits (New York: Wiley).
  4. Fan, L., Fallahi, M., Hader, J., et al. (2007), ‘Linearly polarized dual-wavelength verticalexternal-cavity surface-emitting laser’, Applied Physics Letters, 90 (18), 181124-1–3.
  5. Geske, J., Gan, K. G., Okuno, Y. L., et al. (2004), ‘Vertical-cavity surface-emitting laser active regions for enhanced performance with optical pumping’, IEEE Journal of Quantum Electronics, 40 (9), 1155–62.
  6. Grasso, D. M., a Choquette, K. D. (2003), ‘Threshold and modal characteristics of composite-resonator vertical-cavity lasers’, IEEE Journal of Quantum Electronics, 39 (12), 1526–30.
  7. Hakki, B. (1980), ‘Optical and microwave instabilities in injection lasers’, IEEE Journal of Applied Physics, 51 (1) 68–73.
  8. Henry, C. H. (1982), ‘Theory of the linewidth of semiconductor lasers’, IEEE Journal of Quantum Electronics, 18 (2), 259–64.
  9. Henry, C. H. (1983), ‘Theory of the phase noise and power spectrum of a single mode injection laser’, IEEE Journal of Quantum Electronics, 19 (9), 1391–97.
  10. Hessenius, C., Lukowski, M., a Fallahi, M. (2012), ‘High-power tunable two-wavelength generation in a two chip co-linear t-cavity vertical external cavity surface-emitting laser’, IEEE Applied Physics Letters, 101, 12, 121110-1–3.
  11. Hidaka, T., a Hatano, Y. (1991), ‘Simultaneous two wave oscillation LD using biperiodic binary grating’, IEEE Electronics Letters, 27, 12, 1075–6.
  12. Kitaeva, G. (2008), ‘Terahertz generation by means of optical lasers’, Laser Physics Letters, 5 (8), 559–76.
  13. Leinonen, T., Morozov, Y. A., Härkönen, A., et al. (2005), ‘Vertical External-Cavity Surface-Emitting Laser for Dual-Wavelength Generation’, IEEE Photonics Technology Letters, 17 (12), 2508–10.
  14. Lin, C. F., Chen, M. J. a Lee, B. L. (1998), ‘Wide-range tunable dual-wavelength semiconductor laser using asymmetric dual quantum wells’, IEEE Photonics Technology Letters, 10 (9), 1208–10.
  15. Lax, M. (1967), ‘Classical noise V. Noise in self-sustained oscillators’, Physical Review, 160, 290.
  16. Morozov, Y. A., a Morozov, M. Y. (2013), ‘Intracavity Nonlinear Frequency Down-Conversion in a Continuous-Wave Operation Regime of a Dual-Wavelength Vertical-External-Cavity Surface-Emitting Laser’, IEEE Journal of Quantum Electronics, 19 (5), 1702105-1–5.
  17. Osinksi, M., a Buus, J. (1987), ‘Linewidth broadening factor in semiconductor lasers – an overview’, IEEE Journal of Quantum Electronics, 23 (1), 9–29.
  18. Pal, V., Trofimoff, P., Miranda, B. X., et al. (2010), ‘Measurement of the coupling constant in a two-frequency VECSEL’, Optics Express, 18 (5), 5008–14.
  19. Paschotta, R. (2008), ‘Schawlow–Townes Linewidth’, yn Paschotta, R. (gol.), Encyclopaedia of Laser Physics and Technology, argraffiad 1af (Berlin: Wiley-VHC), t. 655.
  20. Pellandini, P., Stanley, R. P., Houdre, R., et al. (1997), ‘Dual-Wavelength laser emission from a coupled semiconductor micro-cavity’, Applied Physics Letters, 71 (7), 864–6.
  21. Poguntke, K., Soole, J. B. D., Scherer, A., et al. (1993), ‘Simultaneous multiple wavelength operation of a multistripe array grating integrated cavity laser’, Applied Physics Letters, 62, (17), 2024–6.
  22. Saeedkia, D., Mansour, R. R. a Safavi-Naeini, S. (2005), ‘Analysis and design of a continuous-wave terahertz photoconductive photomixer array source’, IEEE Transactions, Antennas and Propagation, 53 (12), 4044–50.
  23. Schawlow, A. L. a Townes, C. H. (1958), ‘Infrared and optical masers’, Physical Review, 112 (6), 1940–9.
  24. Scheller, M., Yarborough, J. M., Moloney, J. V., et al. (2010), ‘Room temperature continuous wave miliwatt terahertz source’, Optics Express, 18 (26), 27112–7.
  25. Van der Ziel, J. P. (1979), ‘Spectral broadening of pulsating AlxGa1-xAs double heterostructure lasers’, IEEE Journal of Quantum Electronics, 15 (11), 1277–81.
  26. Wilmsen, C., Temkin, H., a Coldren, L. A. (1999), Vertical-Cavity Surface-Emitting Lasers – Design, Fabrication, Characterization and Applications (Cambridge: Cambridge University Press).
  27. Yariv, A. (1989), Quantum Electronics, 3ydd argraffiad (New York: Wiley).
  28. Yu, S. F. (2003), Analysis and Design of Vertical Cavity Surface Emitting Lasers (New Jersey: Wiley).
  29. Zhao, B., Chen, T. R., a Yariv, A. (1993), ‘A comparison of amplitude-phase coupling and linewidth enhancement in semiconductor QW and bulk lasers’, IEEE Journal of Quantum Electronics, 29 (4), 1027–30.