Rôl bôn-gelloedd yn adfer meinwe cardiaidd: gwerthuso triniaethau ac adnabod risg


Rôl bôn-gelloedd yn adfer meinwe cardiaidd: gwerthuso triniaethau ac adnabod risg
(The role of stem cells in cardiac tissue regeneration: evaluating treatments and identifying risk)

Noel Davies

This article evaluates the potential of a range of stem cells in cardiac tissue regeneration following a heart attack. Following an initial review of relevant research, some of the main biological mechanisms involved in cardiac tissue regeneration are presented, including:

  1. the role of transcription factors, such as oxytocin and c-kit and paracrine transcription factors;
  2. studies on zebra fish that display mechanisms such as the regnerative role of cardionogen 1, 2- and 3- in reversing the effect of induced cardiac phenotypes that normally regulate heart development;
  3. delivery and engraftment mechanisms, including viral and plasmid vectors, electrical stimulation and nantoechnology.

The results of in vitro and in vivo experiments are reported that have shown the clinical potential of stem cells as well as their immunological and tumorgenic risks. At the time of writing (2012), while the clinical evidence is limited, complex therapeutic models are proposed for future development in the field.


Reference:

 
  	Noel Davies, ‘Rôl bôn-gelloedd yn adfer meinwe cardiaidd: gwerthuso triniaethau ac adnabod risg’, Gwerddon, 20, October 2015, 61-79.
   

Keywords

 
    Stem cells, myocardial infarction, cardiac tissue regeneration, engraftment, nanotechnology.
    

Bibliography:

 
  	
  1. Abujarour, R., a Ding, S. (2009), ‘Induced pluripotent stem cells free of exogenous reprogramming factors’, Genome Biology, 10:220. doi: 10.1186/gb-2009-10-5-220.
  2. Burchfield, J. S., a Dimmeler, S. (2008), ‘Role of paracrine factors in stem and progenitor cell mediated cardiac repair and tissue fibrosis’, Fibrogenesis & Tissue Repair, 1:4. doi: 10.1186/1755-1536-1-4.
  3. Buxton, D. B. (2009), ‘Current status of nanotechnology approaches for cardiovascular disease: a personal perspective’, WIREs Nanomed Nanobiotechnology, 1(2), 149–55. doi: 10.1002/wnan.8.
  4. Chablais, F., Veit, J., Rainer, G., et al. (2011), ‘The zebrafish heart regenerates after cryoinjury-induced myocardial infarction’, BMC Developmental Biology, 11:21. doi: 10.1186/1471-213X-11-21.
  5. Dalton, K. (2013), ‘CADUCEUS: Autologous stem cells safely reverse some MI damage’, TCTMD, ar http://www.tctmd.com/show.aspx?id=119971 [Cyrchwyd: 14 Chwefror 2014].
  6. Dvir, T., Timko, B. P., Brigham, M. D., et al. (2011), ‘Nanowired three-dimensional cardiac patches’, Nature Nanotechnology, 6, 720–5. doi: 1038/nnano.2011.160.
  7. Elnakish, M. T., Hassan, F., Dakhlallah, D., et al. (2012), ‘Mesenchymal stem cells for cardiac regeneration: translation to bedside reality’, Stem Cells International, 2012. doi:10.1155/2012/646038.
  8. Florian M., Jankowski M., a Gutkowska J. (2010), ‘Oxytocin increases glucose uptake in neonatal rat cardiomyocytes, Endocrinology, 151:2, 482–91. doi: 10.1210/en.2009-0624.
  9. Fransioli, J., Bailey B., Gude N. A., et al. (2008), ‘Evolution of the c-kit-positive cell response to pathological challenge in the myocardium’, Stem Cells, 26:5, 1315–1324. doi: 10.1634/stemcells.2007-0751.
  10. Herberts, C. A. (2001), ‘Risk factors in the development of stem cell therapy’, Journal of Translational Medicine, 9:1, 29–42. doi: 10.1186/1479-5876-9-29.
  11. Holladay, C. A., O’Brien, T., a Pandit, A. (2009), ‘Non-viral gene therapy for myocardial engineering’, Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology2, 232–48. doi: 10.1002/wnan.60.
  12. Huang, G., Pashmforoush, M., Chung, B., et al. (2011), ‘The role of cardiac electrophysiology in myocardial regenerative stem cell therapy’, Journal of Cardiovascular Translational Research, 4:1, 61–5. doi: 10.1007/s12265-010-9239-x.
  13. Kaufman, D. S., Hanson, E. T., Lewis, R. L., et al. (2001), ‘Hematopoietic colony-forming cells derived from human embryonic stem cells’, Proceedings of the National Academy of Science USA 2001, 98:19, 10716–21. doi: 10.1073/pnas.191362598.
  14. Kim, D-H., Smith, R. R., Kim, P., et al. (2012), ‘Nanopatterned cardiac cell patches promote stem cell niche formation and myocardial regeneration’, Journal of Integrative Biology, 4:9, 1019–33. doi: 10.1039/c2ib20067h.
  15. King, R. S., a Newmark, P. A. (2012), ‘The cell biology of cell regeneration’, Journal of Cell Biology, 196:5, 553–62. doi: 10.1083/jcb.201105099.
  16. Koch, P., Siemen, H., Biegler, A., et al. (2006), ‘Transduction of human embryonic stem cells by ecotropic retroviral vectors’, Nucleic Acids Research, 34:18. doi: 10.1093/nar/gkl674.
  17. Kuhl, S. J., a Kuhl, M. (2011), ‘Improving cardiac regeneration after injury: are we a step closer?’, Bio Essays, 33:9, 669–73. doi: 10.1002/bies.201100046.
  18. Lepilina, A., Coon, A. N., Kikuchi, K., et al., (2006), ‘A dynamic epicardial injury response supports progenitor cell activity during zebrafish (D. rerio) heart regeneration’, Cell, 127:3, 607–19.
  19. Leri, A., Kajstura, J., ac Anversa, P. (2005), ‘Cardiac stem cells and mechanisms of myocardial regeneration’, Physiology Review, 85:4, 1373–416. doi: 10.1152/physrev.00013.2005.
  20. Li, T-S., Cheng, K., Malliaras, K., et al. (2012), ‘Direct comparison of different stem cell types and subpopulations reveals superior paracrine potency and myocardial repair efficacy with cardiosphere-derived cells’, Journal of the American College of Cardiology, 59:10, 942–53. doi: 10.1016/j.jacc.2011.11.029.
  21. Malliaras, K., a Marban E. (2011), ‘Cardiac cell therapy: where we’ve been, where we are, and where we should be headed’, British Medical Bulletin, 1:98, 161–85. doi: 10.1093/bmb/ldr018.
  22. Marban, E., Makkar, R. R., Smith R. R., et al. (2012), ‘Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial’, The Lancet, 379, 9819, 895–904. doi: 10.1016/S0140-6736(12)60195-0.
  23. Medical Research Council (2012), UK Strategy for Regenerative Medicine, ar http://www.mrc.ac.uk/Utilities/Documentrecord/index.htm?d=MRC008534 [Cyrchwyd: 14 Awst 2012].
  24. Mercola, M., Ruiz-Lozano, P. a Schneider, M. D. (2011), ‘Cardiac muscle regeneration: lessons from development’, Genes Development, 25, 299–309. doi: 10.1101/gad.2018411.
  25. Ni, T. T., Rellinger, E. J., Mukerjee, A., et al. (2011), ‘Discovering small molecules that promote cardiomyocyte generation by modulating Wnt signalling’, Chemistry and Biology, 18, 1658–68. doi: 10.1016/j.chembiol.2011.09.015.
  26. Porrello, E. R., Mahmoud, A. I., Simpson, E., et al. (2011), ‘Transient regenerative potential of the neonatal mouse heart’, Science, 331:6020, 1078–80. doi: 10.1126/science.1200708.
  27. Poss, K. D. (2007), ‘Getting to the heart of regeneration in zebrafish’, Seminars in Cell & Developmental Biology, 18, 36–45. doi:10.1016/j.semcdb.2006.11.009.
  28. Power, C., a Rasko, J. E. J. (2011), ‘Promises and challenges of stem cell research for regenerative medicine’, Annals of Internal Medicine, 155:10, 706–13. doi: 10.7326/0003-4819-155-10-201111150-00010.
  29. Rajala, K., Pekkanen-Mattila, M., a Katriina Aalto-Setälä, K., (2011), ‘Cardiac differentiation of pluripotent stem cells’, Stem Cells International, 2011. doi: 10.4061/2011/383709.
  30. Shevde, N. (2012), ‘Stem cells: flexible friends’, Nature, 483, S23–6. doi: 10.1038/483S22a.
  31. Soldner, S., Hockemeyer, D., Beard, C., et al. (2009), ‘Parkinson’s disease patient-derived induced pluripotent stem cells free of viral peprogramming factors’, Cell, 5:136, 964–77. doi: 10.1016/j.cell.2009.02.013.
  32. Stem Cell Information: The National Institutes of Health Resource for Stem Cell Research, ar http://stemcells.nih.gov/info/ethics.asp [Cyrchwyd: 25 Mehefin 2012]
  33. Takahashi, K., Tanabe, K., Ohnuki M., et al. (2007), ‘Induction of pluripotent stem cells from adult human fibroblasts by defined factors’, Cell, 131:5, 861–72. doi: 10.1016/j.cell.2007.11.019.
  34. Thomson, J. A., Itskovitz-Eldor, J., Shapiro S. S., et al. (1998), ‘Embryonic stem cell lines derived from human blastocysts’, Science, 282, 1145–7. doi: 10.1126/science.282.5391.1145.
  35. Yamanaka, S., Okita, K., ac Ichisaka, T., (2007), ‘Generation of germline-competent induced pluripotent stem cells’, Nature, 448, 313–17. doi: 10.1038/nature05934.
  36. Zhang, K. H., Yu, Q. Z., a Mo, X. M. (2011), ‘Fabrication and intermolecular interactions of silk fibroin/hydroxybutyl shitosan blended nanofibers’, International Journal of Molecular Sciences, 12, 2187–99. doi: 10.3390/ijms12042187.