Sicrhau argaeledd cynnyrch cilgnowyr o’r ansawdd gorau mewn modd effeithlon

Sicrhau argaeledd cynnyrch cilgnowyr o’r ansawdd gorau mewn modd effeithlon
(Ensuring future availability of ruminant products of the highest quality)

Sharon A. Huws, Gareth W. Griffith, Joan E. Edwards, Hefin W. Williams, Penri James, Iwan G. Owen & Alison H. Kingston-Smith

Government statistics illustrate that by 2050 there will be a shortage of meat and milk due to globalpopulationgrowth and the increaseddemand from the Far East. Ensuring food security in terms of availability and nutritionalsafety is, therefore, important for our future existence. Central to achieving milk and meat security are ruminants. Ruminants have a four chambered stomach composed of the reticulum, rumen, abomasum and omasum with microbial fermentation of forage occurring in the rumen. Rumen microbial fermentation is largely responsible for animal production, ruminant product quality and much of greenhouse gas emissions. Indeed, when forage reaches the rumen, the rumen microbes degrade the plant cell wall and subsequently metabolise plant cell content, including plant amino acids and proteins which they convert into proteins that they can utilise. In order to ensure availability of milk and meat of the best possible quality (with the least greenhouse gas emissions) for the future, we must increase our understanding of the plant-microbe interactome using the principles of systems biology and 'omic' technology.


  	Sharon A. Huws, Gareth W. Griffith, Joan E. Edwards, Hefin W. Williams, Penri James, Iwan G. Owen & Alison H. Kingston-Smith, 'Sicrhau argaeledd cynnyrch cilgnowyr o’r ansawdd gorau mewn modd effeithlon', Gwerddon, 13, February 2013, 10-28.


    Meat, milk, rumen, bacteria, protozoa, forage.


  1. Arpigny, J. L. a Jaeger, K. E. (1999), ‘Bacterial lipolytic enzymes: classification and properties’, Biochemistry Journal, 343, 177-83.
  2. Asner, G. P., Elmorre, A. J., Olander, L. P., et al. (2004), ‘Grazing systems, ecosystem responses and global change’, Annual Review of Environment and Resources, 29, 261-99.
  3. Beha, E. M., Theodorou, M. K. a Kingston-Smith, A. H. (2002), ‘Grass cells ingested by ruminants undergo autolysis which differs from senescence: implications for grass breeding targets and livestock production’, Plant, Cell and Environment, 25, 1299-312.
  4. Boeckaert, C., Vlaeminck, B., Fievez, V., et al. (2008), ‘Accumulation of trans C18:1 fatty acids in the rumen after dietary algal supplementation is associated with changes in the Butyrivibrio population’, Applied and Environmental Microbiology, 74, 6923-30.
  5. Bouwman, L., Goldewijk, K. K., Van Der Hoek, K. W., et al. (2011), ‘Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900-2050 period’, Proceeding of the National Academy of Sciences. doi:10.1073/pnas.1012878108.
  6. Broudiscou, L. a Jouany, J. P. (1995), ‘Reassessing the manipulation of protein synthesis by rumen microbes’, Reproduction, Nutrition, Development, 35, 517-35.
  7. Brulc, J. M., Antonopoulos, D. A., Berg Miller, M. E., et al. (2009), ‘Gene-centric metagenomics of fiber-adherent bovine rumen microbiom reveals forage specific glycoside hydrolases’, Proceedings of the National Academy of Science, 106, 1948-53.
  8. Coleman, A. G. a Williams, G. S. (1992), The Rumen Protozoa (Efrog Newydd: SpringerVerlag).
  9. Costerton, J. W., Stewart, P. S. a Greenberg, E. P. (1999), ‘Bacterial biofilms: A common cause for persistant infections’, Science, 10, 135-43.
  10. Davis, K. E., Joseph, S. J. a Janssen, P. H. (2005), ‘Effects of growth medium, inoculum size, and incubation time on culturability and isolation of soil bacteria’, Applied and Environmental Microbiology, 71, 826-34.
  11. Devillard, E., McIntosh, F. M., Newbold C. J., et al. (2006), ‘Rumen ciliate protozoa contain high concentrations of conjugated linoleic acids and vaccenic acid, yet do not hydrogenate linoleic acid or desaturate stearic acid’, British Journal of Nutrition, 96, 697- 704.
  12. Dewhurst, R. J., Davies, D. R. a Merry, R. J. (2000), ‘Microbial protein supply in the rumen’, Animal Feed Science and Technology, 85, 1-21.
  13. Dewhurst, R. J., Scollan, N. D., Lee, M. R. F., et al. (2003), ‘Forage breeding and management to increase the beneficial fatty acid content of ruminant products’, Proceedings of the Nutrition Society, 62, 329-36.
  14. Edwards, J. E., Huws, S. A., Swarbreck, D., et al. (2012), ‘Investigation of a rumen bacterial “functional core” utilising a metatranscriptomics approach’, RRI-INRA Gut Microbiology: Gut microbiota: friend or foe? 8th Biennial Meeting, Clermont Ferrand.
  15. Edwards, A. H., Kingston-Smith, A. H., Jiminez, H. R., et al. (2008a), ‘Dynamics of initial colonisation of nonconserved perennial ryegrass by anaerobic fungi in the bovine rumen’, FEMS Microbiology Ecology, 66, 537-45.
  16. Edwards, J. A., Huws, S. A., Kim, E. J., et al. (2008b), ‘Advances in microbial ecosystem concepts and their consequences for ruminant agriculture’, Animal, 2, 653-60.
  17. Edwards, J. E., Huws, S. A., Kim, E. J., et al. (2007), ‘Characterisation of the dynamics of initial bacterial colonisation of nonconserved forage in the bovine rumen’, FEMS Microbiology Ecology, 62, 323-35.
  18. Edwards, J. E., McEwan, N. R., Travis, A. J., et al. (2004), ‘16S rDNA library-based analysis of ruminal bacterial diversity’, Antonie van Leeuwenhoek, 86, 263-81.
  19. Emmanuel B (1974), ‘On the origin of rumen protozoan fatty acids’, Biochimia Biophysica Acta, 337, tt. 404-13.
  20. FAO (2006), Livestock’s Long Shadow. Environmental Issues and Options, FAO, Rhufain.
  21. FAOSTAT (2009),
  22. Ferrer, M., Golyshina, O. V., Chernikova, T. N., et al. (2005), ‘Novel hydrolase diversity retrieved from a metagenome library of bovine rumen microflora’, Environmental Microbiology, 7, 1996-2010.
  23. Flemming, H. K a Wingender, J. (2010), ‘The Biofilm Matrix’, Nature Reviews, 8, tt. 623-33.
  24. Foresight (2011), The Future of Food and Farming: Challenges and choices for global sustainability, Adroddiad Llywodraeth Prydain.
  25. Gill, M., Smith, P. a Wilkinson, J. M. (2010), ‘Mitigating climate change: the role of domestic livestock’, Animal, 4, 323-33.
  26. Griinari, J. M. A. a Bauman, D. E. (1999), ‘Biosynthesis of conjugated linoleic acid and its incorporation into meat and milk in ruminants’, yn Yurawecz, M. P., Mossoba, M. M., et al. (goln.), Advances in conjugated linoleic acid research 1, tt. 180-200.
  27. Harfoot, C. G. a Hazlewood, G. P. (1997), ‘Lipid metabolism in the rumen’ yn Hobson P.N. a Stewart C.S., (goln.), The Rumen Microbial Ecosystem, tt. 382-426 (Llundain: Chapman & Hall).
  28. Hasan, F., Shah, A. A. a Hameed, A. (2006), ‘Industrial applications of microbial lipases’, Enzyme and Microbial Technology, 39, 235-51.
  29. Hess, M., Sczybra, A., Egan, R., et al. (2011), ‘Metagenomic discovery of biomass-degrading genes and genomes from cow rumen’, Science, 331, 463-7.
  30. Hobson, P. N. a Mann, S. O. (1961), ‘The isolation of glycerol fermenting and lipolytic bacteria from the rumen of the sheep’, Journal of General Microbiology, 25, tt. 227-40.
  31. Hobson, P. N. a Stewart, C. S. (1997), The Rumen Microbial Ecosystem (Llundain: Chapman a Hall).
  32. Hungate, R. E. (1966), The Rumen and its Microbes (Efrog Newydd: Academic Press).
  33. Huws, S. A., Lee, M. R. F., Kingston-Smith, A. H., et al. (2012), ‘Ruminal protozoal contribution to the flow of fatty acids following feeding of steers on forages differing in their chloroplast content’, British Journal of Nutrition, 1, 1-8.
  34. Huws, S. A., Kim E. J., Lee, M. R. F, et al. (2011), ‘As yet uncultured bacteria phylogenetically classified as Prevotella, Lachnospiraceae incertae sedis, and unclassified Bacteroidales, Clostridiales and Ruminococcaceae may play a predominant role in ruminal biohydrogenation’, Environmental Microbiology, 13, 1500-12.
  35. Huws, S. A., Lee, M. R. F., Muetzel, S. M., et al. (2010), ‘Forage type and fish oil cause shifts in rumen bacterial diversity’, FEMS Microbiology Ecology, 73, 396-407.
  36. Huws, S. A., Kim, E. J, Kingston-Smith, A. H., et al. (2009), ‘Rumen protozoa are rich in polyunsaturated fatty acids due to the ingestion of chloroplast’, FEMS Microbiol Ecology, 69, 461-71.
  37. Huws, S. A., Mayorga, O. L., Theodorou, M. K., et al. (2013) ‘Successional colonisation of perennial ryegrass by rumen bacteria’, Letters in Applied Microbiology, 56, 186-196.
  38. Janssen, P. H. a Kirs, M. (2008), ‘Structure of the Archaeal community of the rumen’, Applied and Environmental Microbiology, 74, 3619-25.
  39. Kell, D. B. (2010), Systems microbiology, Microbiology Today, 37, 14-15.
  40. Kim, E. J, Huws, S. A., Lee, M. R. F., et al. (2008), ‘Fish oil increases the duodenal flow of long chain polyunsaturated fatty acids and trans-11 18:1 and decreases 18:0 in steers via changes in the rumen bacterial community’, Journal of Nutrition, 138, 889-96.
  41. Kim, M., Morrison, M. a Zhu, Z. (2011a), ‘Phylogenetic diversity of bacterial communities in bovine rumen as affected by diets and microenvironments’, Folia Microbiologica (Praha), 56, 453-8.
  42. Kim, E. J., Newbold C. J. a Scollan, N. D. (2011b), ‘Effect of water-soluble carbohydrate in fresh forage on growth and methane production by growing lambs’, yn 8th International Symposium on the Nutrition of Herbivores, t. 30 (Caergrawnt: Gwasg y Brifysgol).
  43. Kingston-Smith, A. H., Edwards, J. E., Huws, S. A., et al. (2010), ‘Plantbased strategies towards minimising ‘livestock’s long shadow’, Proceedings of the Nurition Society, 69, 613-20.
  44. Kingston-Smith, A. H., Davies, T. E., Edwards, J. E., et al. (2008), ‘From plants to animals; the role of plant cell death in ruminant herbivores’, Journal of Experimental Botany, 59, 521-32.
  45. Kingston-Smith, A. H., Bollard, A., Armstead, I. P., et al. (2003), ‘Proteolysis and cell death in clover leaves is induced by grazing, Protoplasma, 220, 119-29.
  46. Kopec˘ný, J., Zorec, M., Mrázek, J., et al. (2003), ‘Butyrivibrio hungatei sp nov and Pseudobutyrivibrio xylanivorans sp nov., butyrate-producing bacteria from the rumen’, International Journal of Systematic and Evolutionary Microbiology, 53, 201-9.
  47. Lee, M. R. F., Harris, L. J., Moorby, J. M., et al. (2002), ‘Rumen metabolism and nitrogen flow to the small intestine in steers offered Lolium perenne containing different levels of water-soluble carbohydrate’, Animal Science, 74, 587-96.
  48. Li, L. L., McCorkle, S. R., Monchy, S., et al. (2009), ‘Bioprospecting metagenomes: glycosyl hydrolases for converting biomass’, Biotechnology for Biofuels, 2, 10-20.
  49. Liu, K., Wang, J., Bu, D., et al. (2009), ‘Isolation and biochemical characterization of two lipases from a metagenomic library of China Holstein cow rumen’, Biochemistry and Biophysics Research Communications, 385, 605-11.
  50. Lock, A. L. a Bauman, D. E. (2004), ‘Modifying milk fat composition of dairy cows to enhance fatty acids beneficial to human health’, Lipids, 39, 1197-206.
  51. Lourenco, M. Ramos-Morales, E. a Wallace, R. J. (2010), ‘The role of microbes in rumen lipolysis and biohydrogenation and their manipulation’, Animal, 4, 1008-23.
  52. Mackie, R. I. a White, B. A. (1997), Gastrointestinal Ecosystems and Fermentations (Llundain: Chapman a Hall).
  53. MacRae, J. C., Campbell, D. R. ac Eadie, J. (1975), ‘Changes in the biochemical composition of herbage upon freezing and thawing’, The Journal of Agricultural Research, 84, 125-31.
  54. Månsson, H. L. (2008), ‘Fatty acids in bovine milk fat’, Food and Nutrition Research, 52, 3402-4.
  55. Martin, C., Morgavi, D. P. a Doreau, M. (2010), ‘Methane mitigation in ruminants: from microbe to the farm scale’, Animal, 4, 351-65.
  56. McAllister, T. A., Bae, H. D., Jones, G. A., et al. (1994), ‘Microbial attachment and feed digestion in the rumen’, Journal of Animal Science, 72, 3004-18.
  57. McMichael, A. J., Powles, J. W., Butler, C. D., et al. (2007), ‘Food, livestock production, energy, climate change, and health’, Lancet, 370, 1253-63.
  58. Miller, L. A., Moorby, J. M., Davies, D. R., et al. (2001), ‘Increased concentration of water-soluble carbohydrate in perennial ryegrass (Lolium perenne): Milk production from late-lactation dairy cows’, Grass and Forage Science, 56, 383-94.
  59. Moon, C. D., Pacheco, D. M., Kelly, W. J., et al. (2008), ‘Reclassification of Clostridium proteoclasticum as Butyrivibrio proteoclasticus comb. nov., a butyrate-producing ruminal bacterium’, International Journal of Systematic and Evolutionary Microbiology, 58, 2041-5.
  60. Moorby, J. M., Evans, R. T, Scollan, N. D., et al. (2006), ‘Increased concentration of water-soluble carbohydrate in perennial ryegrass (Lolium perenne). Evaluation in dairy cows in early lactation’, Grass and Forage Science, 61, 52-9.
  61. Mullis, K. B. (1990), ‘Target amplification for DNA analysis by the polymerase chain reaction’, Annales de Biologie Clinique, 48, 579-82.
  62. Neuman, C. G., Bwibo, N. O., Murphy, S. P., et al. (2003), ‘Animal source foods improve deietary quality, micronutrient status, growth and cognitive function in Kenyan school children: background, study design and baseline findings’, Journal of Nutrition, 133, 3941S-3949S.
  63. Ozkose E., Thomas, B. J., Davies, D. R., et al. (2001), ‘Cyllamyces aberensis gen. Nov sp. Nov, a New anaerobic gut fungus with branched sporangiophores isolated from cattle’, Canadian Journal of Botany, 79, 666-73.
  64. Paillard, D., McKain, N., Chaudhary, L. C., et al. (2007), ‘Relation between phylogenetic position, lipid metabolism and butyrate production by different Butyrivibrio-like bacteria from the rumen’, Antonie Van Leeuwenhoek, 91, 417-22.
  65. Park, J. H., Lee, S. Y., Kim, T. Y., et al. (2008), ‘Application of systems biology for bioprocess development', Trends in Biotechnology, 26, 404–12.
  66. Privé, F., Huws, S. A., Scollan, N. D., et al. (2011a), ‘Genomic analysis of Anaerovibrio lipolytica 5S, a rumen lipolytic bacteria’, Symposia rhyngwladol ar ‘Herbivore Nutrition’, Y Deyrnas Unedig.
  67. Privé, F., Huws, S. A., Scollan, N. D., et al. (2011b), ‘Novel lipolytic activity isolated from bovine rumen bacteria metagenomic libraries’, Symposia rhyngwladol ar ‘Herbivore Nutrition’, Y Deyrnas Unedig.
  68. Qi, M., Wang, P., O’Toole, N., et al. (2011), ‘Snapshot of the eukaryotic gene expression in muskoxen rumen – a metatranscriptomic approach’, PLOS One, 6, e20521.
  69. Ribeiro, B. D., De Castro, A. M., Coelho, M. A. Z., et al. (2011), ‘Production of lipases in bioenergy: A review from the feedstocks to biodiesel production’, Enzyme Research, 615803.
  70. Ricard, G., McEwan, N. R., Dutilh, B. E., et al. (2006), ‘Horizontal gene transfer from bacteria to rumen ciliates indicates adaptation to their anaerobic, carbohydrate-rich environment’, BMC Genomics, 7, 22.
  71. Schuster, S. C. (2008), ‘Next-generation sequencing transforms today’s biology’, Nature Methods, 5, 16-18.
  72. Scollan, N. D., Greenwood, P. L., Newbold, C. J., et al. (2011), ‘Future research priorities for animal production in a changing world’, Animal Production Science, 51, 1-5.
  73. Scollan, N., Hocquette, J. F., Nuernberg, K., et al. (2006), ‘Innovations in beef production systems that enhance the nutritional and health value of beef lipids and their relationship with meat quality’, Meat Science, 74, 17-33.
  74. van de Vossenberg, J. a Joblin, K.N. (2003), ‘Biohydrogenation of C18 unsaturated fatty acids to stearic acid by a strain of Butyrivibrio hungatei from the bovine rumen’, Letters in Applied Microbiology, 37, 424-8.
  75. Wallace, R. J, Chaudhary, L. C., McKain, N., et al. (2006), ‘Clostridium proteoclasticum: a ruminal bacterium that forms stearic acid from linoleic acid’, FEMS Microbiology Letters, 265, 195-201.
  76. Zhu,W-Y., Kingston-Smith, A. H., Troncosos, D., et al. (1999), ‘Evidence of a role for plant proteases in the degradation of herbage proteins in the rumen of grazing cattle’, Journal of Dairy Science, 82, 2651-8.