Darogan cyfraniadau rhewlifoedd olaf Eryri i gylchredoedd carbon Cyfnod y Dryas Diweddaraf

Darogan cyfraniadau rhewlifoedd olaf Eryri i gylchredoedd carbon Cyfnod y Dryas Diweddaraf
(Predicting contributions by the last glaciers of Eryri (Snowdonia) to Younger Dryas carbon cycling)

Arwyn Edwards, Sara M. Rassner, Tristram D. L. Irvine-Fynn, Hefin Wyn Williams & Gareth Wyn Griffith

The concept of glaciers as active ecosystems is strongly supported by evidence of significant contributions to global carbon and macronutrient cycles by extant glaciers. Regrettably, the roles of glacial ecosystems in past glaciations are generally overlooked.  Therefore we reconstructed glacial habitats and carbon fluxes on the last glaciers of north Wales at their maximum extent during the Younger Dryas chronozone glaciation. Net uptake of 30-180 kg C of CO2 and emissions of 265-1591 g C CH4 per annum are estimated for the palaeoglaciers. This emphasises the hitherto unexplored potential for the last Welsh glaciers as actors in biogeochemical cycles; however our understanding could be extended by linking our knowledge of contemporary glacial ecosystems with analyses of sedimentary biomarkers and thermomechanical models of Devensian ice mass dynamics.


  	Arwyn Edwards, Sara M. Rassner, Tristram D. L. Irvine-Fynn, Hefin Wyn Williams & Gareth Wyn Griffith, 'Darogan cyfraniadau rhewlifoedd olaf Eryri i gylchredoedd carbon Cyfnod y Dryas Diweddaraf', Gwerddon, 12, December 2012, 53-78.


    Glacial ecosystems, Younger Dryas chronozone glaciation, Snowdonia, glaciers, biogeochemistry.


  1. Abbot, D.S. a Pierrehumbert, R.T. (2010), ‘Mudball: Surface dust and Snowball Earth deglaciation’, Journal of Geophysical Research, 115: D03104.
  2. Alley, R. B., Cuffey, K. M., Evenson, E. B., et al. (1997), ‘How glaciers entrain and transport basal sediment: Physical constraints’, Quaternary Science Reviews, 16, 1017-38.
  3. Anesio, A. M. a Laybourn-Parry, J. (2012), ‘Glaciers and ice sheets as a biome’, Trends in Ecology & Evolution, 27, 219-25.
  4. Anesio, A. M., Hodson, A. J., Fritz, A., et al. (2009), ‘High microbial activity on glaciers: importance to the global carbon cycle’, Global Change Biology, 15, 955-60.
  5. Anesio, A. M., Sattler, B., Foreman, C., et al. (2010), ‘Carbon fluxes through bacterial communities on glacier surfaces’, Annals of Glaciology, 51, 32-40.
  6. Bendle, J. M. a Glasser, N, F. (2012), ‘Palaeoclimatic reconstruction from Lateglacial (Younger Dryas Chronozone) cirque glaciers in Snowdonia, North Wales’, Proceedings of the Geologists’ Association, 123, 130-45.
  7. Bhatia, M., Sharp, M. a Foght, J. (2006), ‘Distinct Bacterial Communities Exist beneath a High Arctic Polythermal Glacier’, Applied and Environmental Microbiology, 72, 5838-45.
  8. Borisova, O. K. (1997), ‘Younger Dryas landscape and climate in Northern Eurasia and North America’, Quaternary International, 41, 103-9.
  9. Boyd, E. S., Skidmore, M., Mitchell, A. C., et al. (2010), ‘Methanogenesis in subglacial sediments’, Environmental Microbiology Reports, 2, 685- 92.
  10. Braithwaite, R. J. (2008), ‘Temperature and precipitation climate at the equilibrium-line altitude of glaciers expressed by the degree-day factor for melting snow’, Journal of Glaciology, 54, 437-44.
  11. Braithwaite, R. J., Raper, S. C. B. a Chutko, K. (2006), ‘Accumulation at the equilibriumline altitude of glaciers inferred from a degree-day model and tested against field observations’, Annals of Glaciology, 43, 329-34.
  12. Brennand, T. A. (1994), ‘Macroforms, large bedforms and rhythmic sedimentary sequences in subglacial eskers, south-central Ontario: implications for esker genesis and meltwater regime’, Sedimentary Geology, 91, 9-55.
  13. Brugger, K. A. (2006), ‘Late Pleistocene climate inferred from the reconstruction of the Taylor River glacier complex, southern Sawatch Range, Colorado’, Geomorphology, 75, 318-29.
  14. Cavicchioli, R. (2006), ‘Cold-adapted archaea’, Nature Reviews Microbiology, 4, 331-43.
  15. Christner, B. C., Kvitko, B. H., a Reeve, J. N. (2003), ‘Molecular identification of bacteria and eukarya inhabiting an Antarctic cryoconite hole’, Extremophiles, 7, 177-83.
  16. Clark, C. D., Evans, D. J. A., Khatwa, A. et al. (2004), ‘Map and GIS database of glacial landforms and features related to the last British Ice Sheet’, Boreas, 33, 359-75.
  17. Darwin, C. (1842), ‘Notes on the effects produced by the ancient glaciers of Caernarvonshire, and on the boulders transported by floating ice’, Philosophical Magazine, 21, 180-8.
  18. Darwin, C. (1859), On the Origin of Species (Llundain: John Murray).
  19. Edwards, A., Anesio, A. M., Rassner, S. M., et al. (2011), ‘Possible interactions between bacterial diversity, microbial activity and supraglacial hydrology of cryoconite holes in Svalbard’, ISME J, 5, 150-60.
  20. Fitzsimons, S. J. (1991), ‘Supraglacial eskers in Antarctica’, Geomorphology, 4, 293-9.
  21. Foreman, C. M., Sattler, B., Mikucki, J. A., et al. (2007), ‘Metabolic activity and diversity of cryoconites in the Taylor Valley, Antarctica’, Journal of Geophysical Research, 112, G04S32.
  22. Fountain, A. G., Tranter, M., Nylen, T. H., et al. (2004), ‘Evolution of cryoconite holes and their contribution to meltwater runoff from glaciers in the McMurdo Dry Valleys, Antarctica’, Journal of Glaciology, 50, 35-45.
  23. Gajda, R. T. (1958), ‘Cryoconite phenomena on the Greenland Ice Cap in the Thule Area’, Canadian Geographer / Le Géographe canadien, 3, 35-44.
  24. Glasser, N. F. a Hambrey, M. J. (2001), ‘Styles of sedimentation beneath Svalbard valley glaciers under changing dynamic and thermal regimes’, Journal of the Geological Society, 158, 697-707.
  25. Gray, J. M. (1982), ‘The last glaciers (Loch Lomond Advance) in Snowdonia, N. Wales’, Geological Journal, 17, 111-33.
  26. Hambrey, M. J., Murray, T., Glasser, N. F. et al. (2005), ‘Structure and changing dynamics of a polythermal valley glacier on a centennial timescale: Midre Lovénbreen, Svalbard’, Journal of Geophysical Research, 110, 19.
  27. Hanna, E., Huybrechts, P., Steffen, K., et al. (2008), ‘Increased Runoff from Melt from the Greenland Ice Sheet: A Response to Global Warming’, Journal of Climate, 21, 331-41.
  28. Hodson, A., Roberts, T., Engvall, A-C., et al. (2010), ‘Glacier ecosystem response to episodic nitrogen enrichment in Svalbard, European High Arctic’, Biogeochemistry, 98, 171-84.
  29. Hodson, A., Boggild, C., Hanna, E., et al. (2010), ‘The cryoconite ecosystem on the Greenland ice sheet’, Annals of Glaciology, 51, 123-9.
  30. Hodson, A., Cameron, K., Bøggild, C., et al. (2010), ‘The structure, biogeochemistry and formation of cryoconite aggregates upon an Arctic valley glacier; Longyearbreen, Svalbard’, Journal of Glaciology, 56, 349-62.
  31. Hodson, A., Anesio, A. M., Ng, F., et al. (2007), ‘A glacier respires: quantifying the distribution and respiration CO2 flux of cryoconite across an entire Arctic supraglacial ecosystem’, Journal of Geophysical Research, 112, 9.
  32. Hodson, A. J., Mumford, P. N., Kohler, J., et al. (2005), ‘The High Arctic glacial ecosystem: new insights from nutrient budgets’, Biogeochemistry, 72, 233-56.
  33. Hodson, A. J., Anesio, A. M., Tranter, M., et al. (2008), ‘Glacial ecosystems’, Ecological Monographs, 78, 41-67.
  34. Hoffman, P. F., Kaufman, A. J., Halverson, G. P., et al. (1998), ‘A Neoproterozoic Snowball Earth’, Science, 281, 1342-6.
  35. Holmlund, P. (1988), ‘An Application of Two Theoretical Melt Water Drainage Models on Storglaciären and Mikkaglaciären, Northern Sweden’, Geografiska Annal, Series A, Physical Geography, 70, 1-7.
  36. Hood, E., a Scott, D. (2008), ‘Riverine organic matter and nutrients in southeast Alaska affected by glacial coverage’, Nature Geosci, 1, 583-7.
  37. Hood, E., Fellman, J., Spencer, R. G. M., et al. (2009), ‘Glaciers as a source of ancient and labile organic matter to the marine environment’, Nature, 462, 1044-7.
  38. Hubbard, A. (2011), ‘The Times Atlas and actual Greenland ice loss’, Geology Today, 27, 212-5.
  39. Hubbard, A., Bradwell, T., Golledge, N., et al. (2009), ‘Dynamic cycles, ice streams and their impact on the extent, chronology and deglaciation of the British-Irish ice sheet’, Quaternary Science Reviews, 28, 758-76.
  40. Hughes, P. D. (2002), ‘Loch Lomond Stadial glaciers in the Aran and Arenig Mountains, North Wales, Great Britain’, Geological Journal, 37, 9-15.
  41. Hughes, P. D. (2009), ‘Loch Lomond Stadial (Younger Dryas) glaciers and climate in Wales’, Geological Journal, 44, 375-91.
  42. Ince, J. (1996), ‘Late-Glacial and Early Holocene Vegetation of Snowdonia’, New Phytologist, 132, 343-53.
  43. Irvine-Fynn, T. D. L., Bridge, J. W., a Hodson, A. J. (2010), ‘Rapid quantification of cryoconite: granule geometry and in situ supraglacial extents, using examples from Svalbard and Greenland’, Journal of Glaciology, 56, 297-308.
  44. Irvine-Fynn, T. D. L., Bridge, J. W., a Hodson, A. J. (2011), ‘In situ quantification of supraglacial cryoconite morpho-dynamics using time-lapse imaging: an example from Svalbard’, Journal of Glaciology. Yn y wasg.
  45. Irvine-Fynn, T. D. L., Hodson, A. J., Moorman, B. J., et al. (2011), ‘Polythermal glacier hydrology: A review’, Reviews in Geophysics, 49, RG4002.
  46. Isarin, R. F. B., Renssen, H. a Vandenberghe, J. (1998), ‘The impact of the North Atlantic Ocean on the Younger Dryas climate in northwestern and central Europe’, Journal of Quaternary Science, 13, 447-53.
  47. Jacob, T., Wahr, J., Pfeffer, W. T., et al. (2012), ‘Recent contributions of glaciers and ice caps to sea level rise’, Nature. Blaengyhoeddiad arlein.
  48. Jansson, K. N. a Glasser, N. F. (2005), ‘Palaeoglaciology of the Welsh sector of the British-Irish Ice Sheet’, Journal of the Geological Society, 162, 25-37.
  49. Kastovska, K., Elster, J., Stibal, M., et al. (2005), ‘Microbial assemblages in soil microbial succession after glacial retreat in Svalbard (high Arctic)’, Microbial Ecology, 50, 396-407.
  50. Mahowald, N. M., Yoshioka, M., Collins, W. D., et al., (2006), ‘Climate response and radiative forcing from mineral aerosols during the last glacial maximum, pre-industrial, current and doubled-carbon dioxide climates’, Geophysical. Research Letters, 33, L20705.
  51. Maitland, P. S., Winfield, I. J., McCarthy, I. D., et al. (2007), ‘The status of Arctic charr’ Salvelinus alpinus in Britain and Ireland, Ecology of Freshwater Fish, 16, 6-19.
  52. Margesin, R., Zacke, G., a Schinner, F. (2002), ‘Characterization of Heterotrophic Microorganisms in Alpine Glacier Cryoconite’, Arctic, Antarctic, and Alpine Research, 34, 88-93.
  53. McCarroll, D., a Ballantyne, C. K. (2000), ‘The last ice sheet in Snowdonia’, Journal of Quaternary Science, 15, 765-78.
  54. Miteva, V. I., a Brenchley, J. E. (2005), ‘Detection and isolation of ultrasmall microorganisms from a 120,000-year-old Greenland glacier ice core’, Applied and Environmental Microbiology, 71, 7806-18.
  55. Oerlemans, J., Giesen, R. H., a van den Broeke, M. R. (2009), ‘Retreating alpine glaciers: increased melt rates due to the accumulation of dust (Vadret da Morteratsch, Switzerland)’, Journal of Glaciology, 55, 729-36.
  56. Petit, J. R., Jouzel, J., Raynaud, D., et al. (1999), ‘Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica’, Nature, 399, 429-36.
  57. Polyakov, I. V., Alekseev, G. V., Bekryaev, R. V., et al. (2002), ‘Observationally based assessment of polar amplification of global warming’, Geophysical Research Letters, 29, 1878.
  58. Priscu, J. C., a Christner, B. C. (2004), ‘Earth’s icy biosphere’, yn A. T. Bull (gol.), Microbial diversity and bioprospectingtt. 130-45. American Society for Microbiology, Washington D.C.
  59. Raiswell, R., Tranter M., Benning, L. G., et al. (2006), ‘Contributions from glacially derived sediment to the global iron (oxyhydr)oxide cycle: Implications for iron delivery to the oceans’, Geochimica et Cosmochimica Acta, 70, 2765-80.
  60. Rasmussen, S. O., Andersen, K. K., Svensson, A. M., et al. (2006), ‘A new Greenland ice core chronology for the last glacial termination’, Journal of Geophysical Research, 111, D06102.
  61. Regier, J. C., Shultz, J. W., Zwick, A., et al. (2010), ‘Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences’, Nature, 463, 1079-83.
  62. Rhind, B., a Jones, B. (2003), ‘The vegetation history of Snowdonia since the late glacial period’, Field Studies Journal, 10, 276.
  63. Rose, J. (1985), ‘The Dimlington Stadial/Dimlington Chronozone: a proposal for naming the main glacial episode of the Late Devensian in Britain’, Boreas, 14, 225-30.
  64. Röthlisberger, H. (1972), ‘Water pressure in intra- and sub-glacial channels’, Journal of Glaciology, 11, 177-203.
  65. Säwström, C., Mumford, P., Marshall W., et al. (2002), ‘The microbial communities and primary productivity of cryoconite holes in an Arctic glacier (Svalbard 79°N)’, Polar Biology, 25, 591-6.
  66. Screen, J. A. a Simmonds, I. (2010), ‘The central role of diminishing sea ice in recent Arctic temperature amplification’, Nature, 464, 1334-7.
  67. Simon, C., Wiezer, A., Strittmatter, A. W., et al. (2009), ‘Phylogenetic Diversity and Metabolic Potential Revealed in a Glacier Ice Metagenome’, Applied and Environmental Microbiology, 75, 7519-26.
  68. Skidmore, M., Anderson, S. P., Sharp, M., et al. (2005), ‘Comparison of Microbial Community Compositions of Two Subglacial Environments Reveals a Possible Role for Microbes in Chemical Weathering Processes’, Applied and Environmental Microbiology, 71, 6986-97.
  69. Skidmore, M. L., Foght, J. M., a Sharp, M. J. (2000), ‘Microbial Life beneath a High Arctic Glacier’, Applied and Environmental Microbiology, 66, 3214-20.
  70. Sowers, T. (2006), ‘Late Quaternary Atmospheric CH4 Isotope Record Suggests Marine Clathrates Are Stable’, Science, 311, 838-40.
  71. Stibal, M., Tranter, M., Benning, L. G., et al. (2008), ‘Microbial primary production on an Arctic glacier is insignificant in comparison with allochthonous organic carbon input’, Environmental Microbiology, 10, 2172-8.
  72. Storrie-Lombardi, M. C., a Sattler, B. (2009), ‘Laser-Induced Fluorescence Emission (LIFE): In Situ Nondestructive Detection of Microbial Life in the Ice Covers of Antarctic Lakes’, Astrobiology, 9, 659-72.
  73. Takeuchi, N. (2002), ‘Optical characteristics of cryoconite (surface dust) on glaciers: the relationship between light absorency and the property of organic matter contained in the cryoconite’, Annals of Glaciology, 34, 409-14.
  74. Takeuchi, N., (2009), ‘Temporal and spatial variations in spectral reflectance and characterisitics of surface dust on Gulkana Glacier, Alaska Range’, Journal of Glaciology, 55, 701-09.
  75. Takeuchi, N., Kohshima, S., a Seko, K. (2001), ‘Structure, formation, and darkening process of albedo-reducing material (cryoconite) on a Himalayan glacier: a granular algal mat growing on the glacier’, Arctic Antarctic and Alpine Research, 33, 115-22.
  76. Takeuchi, N., Nishiyama, H., a Li, Z. (2010), ‘Structure and formation process of cryoconite granules on Ürümqi glacier No. 1, Tien Shan, China’, Annals of Glaciology, 51, 9-14.
  77. Telling, J., Anesio, A. M., Tranter, M., et al. (2011), ‘Nitrogen fixation on Arctic glaciers, Svalbard’, Journal of Geophysical Research Biogeosciences, 116, G03039.
  78. Telling J., Stibal, M., Anesio, A. M. et al. (2012), ‘Microbial nitrogen cycling on the Greenland Ice Sheet’, Biogeosciences, 9, 2431–42.
  79. Tomkins, J., Lamoureux, S., Antoniades, D., et al. (2009a), ‘Sedimentary pellets as an ice-cover proxy in a High Arctic ice-covered lake’, Journal of Paleolimnology, 41, 225-42.
  80. Tomkins, J. D., Lamoureux, S. F., Antoniades, D., et al. (2009b), ‘Sedimentology of perennial ice-covered, meromictic Lake A, Ellesmere Island, at the northern extreme of CanadaPolar Continental Shelf Program Contribution 00109’, Canadian Journal of Earth Sciences, 46, 83-100.
  81. Tranter, M., Sharp, M. J., Lamb, H. R., et al. (2002), ‘Geochemical weathering at the bed of Haut Glacier d’Arolla, Switzerland - a new model’, Hydrological Processes, 16, 959-93.
  82. Tranter, M., Fountain, A. G., Fritsen, C. H., et al. (2004), ‘Extreme hydrochemical conditions in natural microcosms entombed within Antarctic ice’, Hydrological Processes, 18, 379-87.
  83. Truffer, M., Harrison, W. D., a Echelmeyer, K. A. (2000), ‘Glacier motion dominated by processes deep in underlying till’, Journal of Glaciology, 46, 213-21.
  84. Vincent, W. F., a Howard-Williams, C. (2000), ‘Life on Snowball Earth’, Science, 287, 2421.
  85. Vincent, W. F., Gibson, J. A. E., Pienitz, R., et al. (2000), ‘Ice Shelf Microbial Ecosystems in the High Arctic and Implications for Life on Snowball Earth’, Naturwissenschaften, 87, 137-41.
  86. Wadham, J. L., Tranter, M., Tulaczyk, S., a Sharp, M. (2008), ‘Subglacial methanogenesis: A potential climatic amplifier?’, Global Biogeochemical Cycles, 22, GB2021.
  87. Walker, M. J. C., Coope, G. R., Sheldrick, C., et al. (2003), ‘Devensian Lateglacial environmental changes in Britain: a multiproxy environmental record from Llanilid, South Wales, UK’, Quaternary Science Reviews, 22, 475-520.
  88. Walker, M., Johnsen, S., Rasmussen, S. O. et al. (2008), ‘Formal definition and dating of the GSSP (Global Stratotype Section and Point) for the base of the Holocene using the Greenland NGRIP ice core, and selected auxiliary records’, Journal of Quaternary Science, 24, 3–17.
  89. Webster, A. D. (1889), ’Notes on Three Rare Carnarvonshire Plants’, Transactions of the Botanical Society of Edinburgh, 17, 29-32.
  90. Weitemeyer, K. A., a Buffett, B. A. (2006), ‘Accumulation and release of methane from clathrates below the Laurentide and Cordilleran ice sheets’, Global and Planetary Change, 53, 176-87.
  91. Xu, Y., Simpson, A. J., Eyles, N., a Simpson, M. J. (2009), ‘Sources and molecular composition of cryoconite organic matter from the Athabasca Glacier, Canadian Rocky Mountains’, Organic Geochemistry, 41, 177-86.