Dadansoddiad o berfformiad lampau electroymoleuol printiedig ar is-haen ddi-draidd


Dadansoddiad o berfformiad lampau electroymoleuol printiedig ar is-haen ddi-draidd
Eifion Jewell, Tim Claypole a David Gethin

Er mwyn archwilio marchnadoedd newydd ar gyfer deunyddiau electronig printiedig, cynhaliwyd astudiaeth ymchwil i geisio deall perfformiad lampau electroymoleuol (EL) a gynhyrchwyd ar is-haen ('substrate') ddi-draidd. Daw’r posibilrwydd o greu’r lampau o ddeunydd inc sylffonad polystyren poly(3,4-ethylendeuocsithioffen) (PEDOT:PSS) sy’n ffurfio’r electrod top yn y lamp ac sy’n cael ei amnewid am yr indiwn tin ocsid (ITO) a ddefnyddir mewn lampau confensiynol. Gan ddefnyddio proses printio sgrin syml, cynhyrchwyd lampau ar bedair is-haen ddi-draidd (un blastig a thair bapur) a chymharwyd eu perfformiad drwy fesur lefel eu disgleirdeb. Yn gyffredinol, gwelwyd lleihad o tua 50% yn nisgleirdeb y lampau o’i gymharu â disgleirdeb lampau a gynhyrchwyd gan ddefnyddio ITO. Roedd papur ysgafnach a mwy garw yn lleihau’r disgleirdeb ymhellach. Nid oedd modd cynyddu disgleirdeb y lampau drwy ychwanegu haen ychwanegol o PEDOT:PSS gan fod hynny’n lleihau'r nodweddion tryloyw. Wrth gynyddu maint y lamp, mae effaith gwrthiant y PEDOT:PSS o’i gymharu â’r ITO yn achosi dirywiad sylweddol ym mherfformiad y lamp ac yn cyrraedd lefel o 25% yn unig o ddisgleirdeb lamp ITO o 5000 mm2. Nid y lleihad yn nargludedd a thryloywder y PEDOT:PSS o’i gymharu ag ITO yn unig sy’n gyfrifol am berfformiad cymharol wael y lampau di-draidd, ond hefyd natur dopolegol y gronynnau ffosffor, sy’n golygu bod rhai o’r gronynnau y tu hwnt i effaith y maes trydanol a grëwyd rhwng y ddau electrod.


Cyfeiriad:

 
  	Eifion Jewell, Tim Claypole a David Gethin, ‘Dadansoddiad o berfformiad lampau electroymoleuol printiedig ar is-haen ddi-draidd’, Gwerddon, 25, Hydref 2017, 30–44.
   

Allweddeiriau

 
    Electroneg brintiedig, dargludydd tryloyw, is-haen bapur, lampau electroymoleuol.
    

Llyfryddiaeth:

 
  	
  1. Aernouts, T. (2004), ‘Printable anodes for flexible organic solar cell modules’, Thin Solid Films, 451 (452), 22–5.
  2. Agfa, Orgacon Electronic Materials ORGACON Transparent Dual Cure Conductive Screen Printing Ink: Cured Characteristics Typical for EL-P 6010 Mesh / cm. Datasheet.
  3. Bredol, M., a Dieckhoff, H. S. (2010), ‘Materials for Powder-based AC- Electroluminescence’, Materials, 3 (2), 1353–74.
  4. Cież, M., et al. (2007), ‘Large-dimensional light-emitting elements with printed electroluminophore’, Opto-Electronics Review, 15 (3), 159–62.
  5. Consolini, D., Dotti, G., a Depero, L. E. (2002), ‘Spectroscopic characterisation of alternate current electroluminescent devices based on ZnS–Cu’, Area, 341, 79–81.
  6. Das, R. (2013), ‘Printed Electronics Market Forecast 2013’, yn Printed Electronics 2013 (Berlin: IDTechEx).
  7. Denneulin, A., et al. (2008), ‘PEDOT:PSS coating on specialty papers: process optimization and effects of surface properties on electrical performances’, Progress in Organic Coatings, 63, 87–91.
  8. Elschner, A., et al. (2010), PEDOT: Principles and Applications of an Intrinsically Conductive Polymer (Boca Raton, FL: CRC Press).
  9. Gan, Y., Liu, J. a Zeng, S. (2006), ‘Transparent conductive indium tin oxide film fabricated by dip-coating technique from colloid precursor’, Surface and Coatings Technology, 201 (1-2), 25–9.
  10. Ibañez, J., et al. (2007), ‘Frequency-dependent light emission and extinction of electroluminescent ZnS:Cu phosphor’, Displays, 28 (3), 112–17.
  11. Jabbour, G. E., Radspinner, R., a Peyghambarian, N. (2001), ‘Screen printing for the fabrication of organic light-emitting devices’, IEEE Journal of Selected Topics in Quantum Electronics, 7 (5), 769–73.
  12. Kim, J., et al. (2010), ‘Paper as a Substrate for Inorganic Powder Electroluminescence Devices’, World, 57 (6), 1470–4.
  13. Kim, S., et al. (1999), ‘Transparent conductive ITO thin films through the sol-gel process using metal salts’, Thin Solid Films, 347 (1–2), 155–60.
  14. Krebs, F. C., et al. (2004), ‘Production of large-area polymer solar cells by industrial silk screen printing, lifetime considerations and lamination with polyethyleneterephthalate’, Solar Energy Materials and Solar Cells, 83 (2–3), 293–300.
  15. Lupo, D., et al. (2013), ‘OE-A Roadmap for Organic and Printed Electronics’, yn Eugenio Cantatore (gol.), Applications of Organic and Printed Electronics (London: Springer), tt. 1–26.
  16. Sharma, G., et al. (2006), ‘Electroluminescent efficiency of alternating current thick film devices using ZnS:Cu,Cl phosphor’, Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 131 (1–3), 271–6.
  17. Straue, N., et al. (2011), ‘Tape Casting of ITO Green Tapes for Flexible Electroluminescent Lamps’, Journal of the American Ceramic Society, 95 (2), 684–9.
  18. Tobjörk, D., ac Österbacka, R. (2011), ‘Paper electronics’, Advanced Materials, 23 (17), 1935–61.
  19. Trnovec, B., et al. (2009), ‘Coated Paper for Printed Electronics’, Professional Papermaking, 1, 48–51.
  20. Weigelt, K., et al. (2012), ‘Bidirectional flexible mouldable electroluminescent lamps fabricated by screen printing’, IARIGAI Journal of Print and Media Technology Research, 1 (2), 97–102.
  21. Zovko, C. I., a Nerz, T. C. (1999), ‘White polymer thick film electroluminescent lamps and their applications for backlighting liquid crystal displays in portable electronic devices’, Science, 20, 155–9.