Llyfryddiaeth:
- Anderssen, R. S. et al. (2015), ‘Derivative based algorithms for continuous relaxation spectrum recovery’, Journal of Non-Newtonian Fluid Mechanics, 222, 132–40.
- Anderssen, R. S. et al. (2015), ‘Simple joint inversion localized formulae for relaxation spectrum recovery’, The ANZIAM Journal, 58(1), 1–9.
- Ankiewitz, S. et al. (2016), ‘On the use of continuous relaxation sbectra to characterize model polymers’, Journal of Rheology, 60(6), 1115–20.
- Bernstein, S. N. (1928), ‘Sur les fonctions absolument monotones’, Acta Mathematica, 52(1), 1–66.
- Davies, A. R., et al. (2016), ‘Derivative spectroscopy and the continuous relaxation spectrum’, Journal of Non-Newtonian Fluid Mechanics, 233, 107–18.
- Davies, A. R., a Goulding, N. J. (2012), ‘Wavelet regularization and the continuous relaxation spectrum’, Journal of Non-Newtonian Fluid Mechanics, 189, 19–30.
- Ferry, J. D. (1970), Viscoelastic properties of polymers (New York: Wiley).
- Fuoss, R., a Kirkwood, J. (1941), ‘Electrical Properties of Solids, VIII. Dipole Moments in Polyvinyl Chloride-Diphenyl Systems’, Journal of the American Chemical Society, 63(2), 385–94.
- Mallat, S. (2009), A Wavelet Tour of Signal Processing. The Sparse Way (San Diego: Academic Press).
- McDougall, I., Orbey, N., a Dealy, J. (2014), ‘Inferring meaningful relaxation sbectra from experimental data’, Journal of Rheology, 53(3), 770–97.
- Loy, R. J. et al. (2017), ‘Convergence in relaxation spectrum recovery’, Bulletin of the Australian Mathematical Society, 95(1), 121–32.
- Powell, M. J. D. (1981), Approximation theory and methods (Cambridge: CUP).
- Saut, J. C, a Joseph, D. D. (1983), ‘Fading memory’, Archive for Rational Mechanics and Analysis, 81(1), 53–95.
- Tanner, R. I., a Walters, K. (1998), Rheology: An Historical Perspective (Amsterdam: Elsevier).
- Tschoegl, N. W. (1989), The Phenomenological Theory of Linear Viscoelastic Behaviour (Berlin Heidelberg: Springer-Verlag).
- Walters, K. (1975), Rheometry (London: Chapman and Hall).