Rôl bôn-gelloedd yn adfer meinwe cardiaidd: gwerthuso triniaethau ac adnabod risg


Rôl bôn-gelloedd yn adfer meinwe cardiaidd: gwerthuso triniaethau ac adnabod risg
Noel Davies

Mae’r erthygl hon yn gwerthuso potensial ystod o fôn-gelloedd ar gyfer atffurfio meinwe cardiaidd yn dilyn trawiad ar y galon. Ar sail arolwg cychwynnol o ymchwil perthnasol, cyflwynir rhai o’r prif fecanweithiau biolegol parthed atffurfio meinwe cardiaidd, yn cynnwys:

  1. rôl ffactorau trawsgrifio, megis ocsitosin a c-kit a ffactorau twf paracrinaidd;
  2. astudiaethau ar bysgod rhesog sydd wedi datgelu mecanweithiau megis rôl atffurfiannol cardionogen 1-, 2- a 3-, a’u swyddogaeth yn atal effeithiau ffenoteipiau cardiaidd sy’n rheoli datblygiad y galon;
  3. mecanweithiau cludo ac impwreiddio, yn cynnwys fectorau firol a phlasmidol, ysgogiad trydanol a nanodechnoleg.

Adroddir am ganlyniadau arbrofion in vitro ac in vivo sydd wedi dangos fod i fôngelloedd botensial clinigol yn y maes hwn, yn ogystal â pheryglon imiwnolegol a thiwmorigenig. Ar hyn o bryd (2012), er bod y dystiolaeth glinigol yn brin, awgrymirmodelau therapiwtig cymhleth i’w datblygu yn y dyfodol.


Cyfeiriad:

 
  	Noel Davies, 'Rôl bôn-gelloedd yn adfer meinwe cardiaidd: gwerthuso triniaethau ac adnabod risg', Gwerddon, 20, Hydref 2015, 61-79.
   

Allweddeiriau

 
    Bôn-gelloedd, cnawdnychiad myocardiaidd, atffurfiad meinwe cardiaidd, impwreiddio, nanodechnoleg
    

Llyfryddiaeth:

 
  	
  1. Abujarour, R., a Ding, S. (2009), ‘Induced pluripotent stem cells free of exogenous reprogramming factors’, Genome Biology, 10:220. doi: 10.1186/gb-2009-10-5-220.
  2. Burchfield, J. S., a Dimmeler, S. (2008), ‘Role of paracrine factors in stem and progenitor cell mediated cardiac repair and tissue fibrosis’, Fibrogenesis & Tissue Repair, 1:4. doi: 10.1186/1755-1536-1-4.
  3. Buxton, D. B. (2009), ‘Current status of nanotechnology approaches for cardiovascular disease: a personal perspective’, WIREs Nanomed Nanobiotechnology, 1(2), 149–55. doi: 10.1002/wnan.8.
  4. Chablais, F., Veit, J., Rainer, G., et al. (2011), ‘The zebrafish heart regenerates after cryoinjury-induced myocardial infarction’, BMC Developmental Biology, 11:21. doi: 10.1186/1471-213X-11-21.
  5. Dalton, K. (2013), ‘CADUCEUS: Autologous stem cells safely reverse some MI damage’, TCTMD, ar http://www.tctmd.com/show.aspx?id=119971 [Cyrchwyd: 14 Chwefror 2014].
  6. Dvir, T., Timko, B. P., Brigham, M. D., et al. (2011), ‘Nanowired three-dimensional cardiac patches’, Nature Nanotechnology, 6, 720–5. doi: 1038/nnano.2011.160.
  7. Elnakish, M. T., Hassan, F., Dakhlallah, D., et al. (2012), ‘Mesenchymal stem cells for cardiac regeneration: translation to bedside reality’, Stem Cells International, 2012. doi:10.1155/2012/646038.
  8. Florian M., Jankowski M., a Gutkowska J. (2010), ‘Oxytocin increases glucose uptake in neonatal rat cardiomyocytes, Endocrinology, 151:2, 482–91. doi: 10.1210/en.2009-0624.
  9. Fransioli, J., Bailey B., Gude N. A., et al. (2008), ‘Evolution of the c-kit-positive cell response to pathological challenge in the myocardium’, Stem Cells, 26:5, 1315–1324. doi: 10.1634/stemcells.2007-0751.
  10. Herberts, C. A. (2001), ‘Risk factors in the development of stem cell therapy’, Journal of Translational Medicine, 9:1, 29–42. doi: 10.1186/1479-5876-9-29.
  11. Holladay, C. A., O’Brien, T., a Pandit, A. (2009), ‘Non-viral gene therapy for myocardial engineering’, Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology2, 232–48. doi: 10.1002/wnan.60.
  12. Huang, G., Pashmforoush, M., Chung, B., et al. (2011), ‘The role of cardiac electrophysiology in myocardial regenerative stem cell therapy’, Journal of Cardiovascular Translational Research, 4:1, 61–5. doi: 10.1007/s12265-010-9239-x.
  13. Kaufman, D. S., Hanson, E. T., Lewis, R. L., et al. (2001), ‘Hematopoietic colony-forming cells derived from human embryonic stem cells’, Proceedings of the National Academy of Science USA 2001, 98:19, 10716–21. doi: 10.1073/pnas.191362598.
  14. Kim, D-H., Smith, R. R., Kim, P., et al. (2012), ‘Nanopatterned cardiac cell patches promote stem cell niche formation and myocardial regeneration’, Journal of Integrative Biology, 4:9, 1019–33. doi: 10.1039/c2ib20067h.
  15. King, R. S., a Newmark, P. A. (2012), ‘The cell biology of cell regeneration’, Journal of Cell Biology, 196:5, 553–62. doi: 10.1083/jcb.201105099.
  16. Koch, P., Siemen, H., Biegler, A., et al. (2006), ‘Transduction of human embryonic stem cells by ecotropic retroviral vectors’, Nucleic Acids Research, 34:18. doi: 10.1093/nar/gkl674.
  17. Kuhl, S. J., a Kuhl, M. (2011), ‘Improving cardiac regeneration after injury: are we a step closer?’, Bio Essays, 33:9, 669–73. doi: 10.1002/bies.201100046.
  18. Lepilina, A., Coon, A. N., Kikuchi, K., et al., (2006), ‘A dynamic epicardial injury response supports progenitor cell activity during zebrafish (D. rerio) heart regeneration’, Cell, 127:3, 607–19.
  19. Leri, A., Kajstura, J., ac Anversa, P. (2005), ‘Cardiac stem cells and mechanisms of myocardial regeneration’, Physiology Review, 85:4, 1373–416. doi: 10.1152/physrev.00013.2005.
  20. Li, T-S., Cheng, K., Malliaras, K., et al. (2012), ‘Direct comparison of different stem cell types and subpopulations reveals superior paracrine potency and myocardial repair efficacy with cardiosphere-derived cells’, Journal of the American College of Cardiology, 59:10, 942–53. doi: 10.1016/j.jacc.2011.11.029.
  21. Malliaras, K., a Marban E. (2011), ‘Cardiac cell therapy: where we’ve been, where we are, and where we should be headed’, British Medical Bulletin, 1:98, 161–85. doi: 10.1093/bmb/ldr018.
  22. Marban, E., Makkar, R. R., Smith R. R., et al. (2012), ‘Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial’, The Lancet, 379, 9819, 895–904. doi: 10.1016/S0140-6736(12)60195-0.
  23. Medical Research Council (2012), UK Strategy for Regenerative Medicine, ar http://www.mrc.ac.uk/Utilities/Documentrecord/index.htm?d=MRC008534 [Cyrchwyd: 14 Awst 2012].
  24. Mercola, M., Ruiz-Lozano, P. a Schneider, M. D. (2011), ‘Cardiac muscle regeneration: lessons from development’, Genes Development, 25, 299–309. doi: 10.1101/gad.2018411.
  25. Ni, T. T., Rellinger, E. J., Mukerjee, A., et al. (2011), ‘Discovering small molecules that promote cardiomyocyte generation by modulating Wnt signalling’, Chemistry and Biology, 18, 1658–68. doi: 10.1016/j.chembiol.2011.09.015.
  26. Porrello, E. R., Mahmoud, A. I., Simpson, E., et al. (2011), ‘Transient regenerative potential of the neonatal mouse heart’, Science, 331:6020, 1078–80. doi: 10.1126/science.1200708.
  27. Poss, K. D. (2007), ‘Getting to the heart of regeneration in zebrafish’, Seminars in Cell & Developmental Biology, 18, 36–45. doi:10.1016/j.semcdb.2006.11.009.
  28. Power, C., a Rasko, J. E. J. (2011), ‘Promises and challenges of stem cell research for regenerative medicine’, Annals of Internal Medicine, 155:10, 706–13. doi: 10.7326/0003-4819-155-10-201111150-00010.
  29. Rajala, K., Pekkanen-Mattila, M., a Katriina Aalto-Setälä, K., (2011), ‘Cardiac differentiation of pluripotent stem cells’, Stem Cells International, 2011. doi: 10.4061/2011/383709.
  30. Shevde, N. (2012), ‘Stem cells: flexible friends’, Nature, 483, S23–6. doi: 10.1038/483S22a.
  31. Soldner, S., Hockemeyer, D., Beard, C., et al. (2009), ‘Parkinson’s disease patient-derived induced pluripotent stem cells free of viral peprogramming factors’, Cell, 5:136, 964–77. doi: 10.1016/j.cell.2009.02.013.
  32. Stem Cell Information: The National Institutes of Health Resource for Stem Cell Research, ar http://stemcells.nih.gov/info/ethics.asp [Cyrchwyd: 25 Mehefin 2012]
  33. Takahashi, K., Tanabe, K., Ohnuki M., et al. (2007), ‘Induction of pluripotent stem cells from adult human fibroblasts by defined factors’, Cell, 131:5, 861–72. doi: 10.1016/j.cell.2007.11.019.
  34. Thomson, J. A., Itskovitz-Eldor, J., Shapiro S. S., et al. (1998), ‘Embryonic stem cell lines derived from human blastocysts’, Science, 282, 1145–7. doi: 10.1126/science.282.5391.1145.
  35. Yamanaka, S., Okita, K., ac Ichisaka, T., (2007), ‘Generation of germline-competent induced pluripotent stem cells’, Nature, 448, 313–17. doi: 10.1038/nature05934.
  36. Zhang, K. H., Yu, Q. Z., a Mo, X. M. (2011), ‘Fabrication and intermolecular interactions of silk fibroin/hydroxybutyl shitosan blended nanofibers’, International Journal of Molecular Sciences, 12, 2187–99. doi: 10.3390/ijms12042187.