Llyfryddiaeth:
- Alfaro, M., Brock, J., Foisy, J., et al. (1990), ‘Compound soap bubbles in the plane. SMALL Geometry Group’, traethawd PhD, Williams College, Williamstown, MA.
- Alfaro, M., Brock, J., Foisy, J., et al. (1993), ‘The standard double soap bubble in R2 uniquely minimizes perimeter’, Pacific Journal of Mathematics, 159, 47–59.
- Almgren, F. a Taylor, J. (1976), ‘The geometry of soap films and soap bubbles’, Scientific American, 82–93.
- Bleicher, M. N. (1987), ‘Isoperimetric divisions into several cells with natural boundary’, Intuitive Geometry, Colloquia Mathematica Societatis János Bolyai, 48, 63–84.
- Brakke, K. (1992), ‘The Surface Evolver’, Experimental Mathematics, 1, 141–52.
- Canete, A. a Ritore, M. (2004), ‘Least-perimeter partitions of the disk into three regions of given areas’, Indiana University Mathematics Journal, 53, 883–904.
- Cantat, I., Cohen-Addad, S., Elias, F., et al. (2013), Foams Structure and Dynamics (Oxford: Oxford University Press).
- Cox, S. J. (2006), ‘Calculations of the minimal perimeter for n deformable cells of equal area confined in a circle’, Philosophical Magazine Letters, 86, 569–78.
- Cox, S. J. a Flikkema, E. (2010), ‘The minimal perimeter for N confined deformable bubbles of equal area’, The Electronic Journal of Combinatorics, 17, R45.
- Cox, S. J. a Graner, F. (2003), ‘Large two-dimensional clusters of equal-area bubbles’, Philosophical Magazine, 83, 2573–84.
- Cox, S. J., Graner, F., Vaz, M. F., et al. (2003), ‘Minimal perimeter for n identical bubbles in two dimensions: calculations and simulations’, Philosophical Magazine, 83, 1393–1406.
- Engelstein, M. (2010), ‘The least-perimeter partition of a sphere into four equal areas’, Discrete & Computational Geometry, 44, 645–53.
- Goldberg, M. (1934), ‘The isoperimetric problem for polyhedra’, Tohoku Mathematical Journal, 40, 226–36.
- Hales, T. C. (2002), ‘The honeycomb conjecture on the sphere’, arXiv:math/0211234.
- Heppes, A. a Morgan, F. (2005), ‘Planar clusters and perimeter bounds’, Philosophical Magazine, 85, 1333–45.
- Morgan, F. (1994), ‘Mathematicians, including undergraduates, look at soap bubbles’, The American Mathematical Monthly, 101, 343–51.
- Morgan, F. (2000), Geometric Measure Theory (Williamstown, MA: Academic Press).
- Plateau, J. A. F. (1873), Statique expérimentale et théorique des liquides soumis aux seules forces moléculaires (Paris: Gauthier-Villars).
- Ros, A. (2005), ‘The isoperimetric problem’, yn Hoffman, D. (gol.), Global Theory of Minimal Surfaces, Clay Mathematics Proceedings, Volume 2, tt.175–209 (Cambridge, MA: American Mathematical Society).
- Taylor, J. E. (1976), ‘The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces’, Annals of Mathematics, 103, 489–539.
- Tomonaga, Y. (1974), ‘Geometry of Length and Area’, traethawd PhD, Utsonomiy University, Tokyo.
- Thomson, W. (1887), ‘On the division of space with minimum partitional area’, Philosophical Magazine, 24, 503.
- Weaire, D. (1994), The Kelvin Problem (London: Taylor & Francis).
- Weaire, D., a Hutzler, S. (2000), The Physics of Foams (Oxford: Oxford University Press).
- Weaire, D., a Phelan, R. (1993), ‘A counter-example to Kelvin’s conjecture on minimal surfaces’, Philosophical Magazine Letters, 69, 107–10.
- Wichiramala, W. (2004), ‘Proof of the planar triple bubble conjecture’, Journal für die reine und agnewandte Mathematik, 567, 1–49.