Llyfryddiaeth:
- Awdurdod Glo (dim dyddiad), http://coal.decc.gov.uk/ [Cyrchwyd: 29 Medi 2013].
- Banks, D., Younger, P. L., Arnesen, R. T., et al. (1997), ‘Mine-water chemistry: the good, the bad and the ugly’, Environmental Geology, 32 (3), 157-74.
- Barclay, W. J., Taylor, K., Thomas, L. P., et al. (1988), Geology of the South Wales Coalfield. Part V. The Country around Merthyr Tydfil (Keyworth, British Geological Survey).
- Batty, L. C., a Younger, P. L. (2002), ‘Critical role of macrophytes in achieving low iron concentrations in mine water treatment systems’, Environmental Science and Technology, 36, 3997-4002.
- Bearcock, J. M. (2007), ‘Remediation of mine drainage using naturally-occurring iron oxyhydroxides’, traethawd PhD., Prifysgol Aberystwyth, Aberystwyth.
- Bearcock, J. M., Perkins, W. T., Dinelli, E., et al. (2006), ‘Fe(II)/Fe(III) ‘green rust’ developed within ocherous coal-mine drainage sediment in South Wales, UK’, Mineralogical Magazine, 70, 731-41.
- Borja, A., Franco, J., Valencia, V., et al. (2004), ‘Implementation of the European water framework directive from the Basque country (northern Spain): a methodological approach’, Marine Pollution Bulletin, 48 (3-4), 209-18.
- Borja, A., Josefson, A. B., Miles, A., et al. (2007), ‘An approach to the intercalibration of benthic ecological status assessment in the North Atlantic ecoregion, according to the European Water Framework Directive’, Marine Pollution Bulletin, 55 (1-6), 42-52.
- Cole, J. E., Miliorizos, M., Frodsham, K., et al. (1991), ‘Variscan structures in the opencast coal sites of the South Wales Coalfield’, Proceedings of the Ussher Society, 7, 375-9.
- Cornell, R. M., a Schwertmann, U. (2000), The iron oxides structure, properties, reactions, occurrence and uses (New York: VCH Publishers).
- Coulton, R., Bullen, C., a Hallet, C. (2003a), ’The design and optimisation of active mine water treatment plants’, Land Contamination and Reclamation, 11 (2), 273-9.
- Coulton, R., Bullen, C., Dolan, J., et al. (2003b), ‘Wheal Jane mine water active treatment plant – design, construction and operation’, Land Contamination and Reclamation, 11 (2), 245-52.
- Davies, S. J., Guion, P. D., a Gutteridge, P. (2012), ‘Carboniferous sedimentation and volcanism on the Larussian margin’, yn Woodcock, N., a Strachan, R. (goln), Geological History of Britain and Ireland (2ail argraffiad, Oxford: Blackwell Science), tt. 227-70.
- De Vos, W., Tarvainen, T., a Salminen, R. M., et al. (2006), Geochemical Atlas of Europe. Part 2 – Interpretation of Geochemical Maps, Additional Tables, Figures, Maps and Related Publications (Espoo: Geological Survey of Finland).
- Drever, J. I. (1997), The Geochemistry of Natural Waters: surface and groundwater environments (3ydd argraffiad, New Jersey: Prentice Hall).
- Evans, K. A., Watkins, D. C., a Banwart, S. A. (2006), ‘Rate controls on the chemical weathering of natural polymineralic material II. Rate controlling mechnisms and mineral sources and sinks for element release from four UK mine-sites, and implications for comparison of laboratory and field scale weathering studies’, Applied Geochemistry, 21, 377-403.
- Falkowski, P. G., Fenchel, T., a Delong, E. F. (2008), ‘The microbial engines that drive earth’s biogeochemical cycles’, Science, 320, 1034-9.
- Fowler, P., a Gayer, R. A. (1999), ‘The association between tectonic deformation, inorganic composition and coal rank in the bituminous coals from the South Wales coalfield, United Kingdom’, International Journal of Coal Geology, 42, 1-31.
- Fuge, R., Laidlaw, I. M. S., Perkins, W. T., et al. (1991), ‘The influence of acid mine and spoil drainage on water quality in the mid-Wales area’, Environmental Geochemistry and Health, 13 (2), 70-5.
- Geroni, J. N. (2011), ‘Rates and mechanisms of chemical processes affecting the treatment of ferruginous mine water’, traethawd PhD, Prifysgol Caerdydd, Caerdydd.
- Geroni, J. N., Sapsford, D. J., Barnes, A., et al. (2009), ‘Current performance of passive treatment systems in South Wales, UK’, Abstracts of the International Mine Water Conference, 19-23 Hydref (Pretoria: Internation Mine Water Association), 486-94.
- Hedrich, S., Schlomann, M., a Johnson, D. B. (2011), ‘The iron-oxidizing proteobacteria’, Microbiology, 157 (6), 1551-64.
- Hedrich, S., a Johnson, D. B. (2012), ‘A modular continuous flow reactor system for the selective bio-oxidation of iron and precipitation of shwertmannite from mine-impacted waters’, Bioresource Technology, 106, 44-9.
- Hornung, M., Le-Grice, S., Brown, N., et al. (1990), ‘The role of geology and soils in controlling water acidity in Wales’, yn Edwards, R. W., Gee, A. S., a Stoner, J. H. (goln), Acid Waters in Wales (Dordrecht: Kluwer Academic Publishers), 55-66.
- Johnson, D. B. (2003), ‘Chemical and microbiological characteristics of mineral spoils and drainage waters at abandoned coal and metal mines’, Water, Air and Soil Pollution, 3, 47-66.
- Johnson, D. B., a Hallberg, K. B. (2002), ‘Pitfalls of passive mine water treatment’, Reviews in Environmental Science and Biotechnology, 1 (4), 335-43.
- Johnson, D. B., a Hallberg, K. B. (2003), ‘The microbiology of acid mine drainage’, Research in Microbiology, 154, 466-73.
- Johnson, D. B., a Hallberg, K. B. (2005), ‘Acid mine drainage remediation options: a review’, Science of the Total Environment, 338, 3-14.
- Lewis, B. (1971), Coal mining in the eighteenth and nineteenth centuries (London: Longman).
- Meredith, E. L., a Kuzara, S. L. (2012), ‘Identification and quantification of base flow using carbon isotopes’, Ground Water, 50 (6), 959-65.
- Neubauer, S. C., Emerson, D., a Megonigal, J. P. (2002), ‘Life at the energetic edge: kinetics of circumneutral iron oxidation by lithotrophic iron-oxidizing bacteria isolated from the wetland-plant rhizosphere’, Applied Environmental Microbiology, 68, 3988-95.
- Nordstrom, D. K. (2011), ‘Mine waters: acidic to circumneutral’, Elements, 7, 393-8.
- Nordstrom, D. K., Jenne, E. A., a Ball, J. W. (1979), ‘Redox equilibria of iron in acid mine waters. Chemical Modeling in Aqueous Systems’, yn Jenne, E. A. (gol.), Chemical Modeling in Aqueous Systems (California: American Chemical Society), tt. 51-79.
- Nordstrom, D. K., ac Alpers, C. N. (1999), ‘Geochemistry of acid mine waters’, yn Plumlee, G. S., a Logsdon, M. J. (goln), The Environmental Geochemistry of Mineral Deposits: Part A. Processes, Techniques and Health Issues (Littleton: Society of Economic Geologists), tt. 133-60. NRFA (dim dyddiad), http://www.ceh.ac.uk/data/nrfa/ [Cyrchwyd: 15 Mehefin 2013].
- Parker, K. (2003), ‘Mine water management on a national scale: experiences from the coal authority’, Land Contamination and Reclamation, 11 (2), 181-90.
- Rees, B., a Connelly, R. (2003), ‘Review of design and performance of the Pelenna wetland systems’, Land Contamination and Reclamation, 11 (2), 293-300.
- Rose, A. W., a Cravotta, C. A., III (1998), ‘Geochemistry of coal mine-drainage’, yn Brady, K. B. C., Smith M. W., a Schueck, J. (goln), Coal Mine Drainage Prediction and Pollution Prevention in Pennsylvania (Harrisburg: Department of Environmental Protection), 1.1-1.22.
- Salimnen, R., Batista, M. J., Bidovec, M., et al. (2005), Geochemical Atlas of Europe, Part 1 – Background Information, Methodology and Maps (Espoo: Geological Survey of Finland).
- Singer, P. C., a Stumm, W. (1970), ‘Acidic mine drainage: the rate-determining step’, Science, 167, 1121-3.
- Shen, Y., a Buick, R. (2004), ‘The antiquity of microbial sulphate reduction’, Earth-Science Reviews, 64, 243-72.
- Stumm, W., a Morgan, J. J. (1996), Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters (New York: John Wiley & Sons).
- Wardle, P. (2011), ‘The selective heating of pyrite in the coal using microwave energy’, traethawd PhD., Prifysgol Nottingham, Nottingham.
- Watson, I. A. (2007), ‘Managing minewater in abandoned coalfields using engineered gravity discharges’, Proceedings of the IMWA Symposia (Cagliari: International Mine Water Association), 355-9.
- Waybrant, K. R., Ptacek, C. J. a Blowes, D. W. (2002), ‘Treatment of mine drainage using permeable reactive barriers: column experiments’, Environmental Science and Technology, 36 (6), 1349-1356.
- Webber, K., Achenbach, L. A., a Coates, J. D. (2006), ‘Microorganisms pumping iron: anaerobic microbial oxidation and reduction’, Nature Reviews Microbiology, 4, 752-64.
- Whitehead, P. G., Hall, G., Neal, H., et al. (2005), ‘Chemical behaviour of the Wheal Jane bioremediation system’, Science of the Total Environment, 338 (1-2), 41-51.
- Wilby, R. L., Orr, H. G., Hedger, M., et al. (2006), ‘Risks posed by climate change to the delivery of the Water Framework Directive in the UK’, Environment International, 32 (8), 1043-55.
- Wiseman, I. M., ac Edwards P. J. (2004), ‘Constructed wetlands for minewater treatment: performance and sustainability’, Water and Environment Journal, 18 (3), 127-32.
- Younger, P. L. (1997), ‘The longevity of minewater pollution: a basis for decision-making’, The Science of the Total Environment, 194/195, 457-66.
- Younger, P. L. (2000), ‘The adoption and adaptation off passive treatment technologies for mine waters in the United Kingdom’, Mine Water and the Environment, 19, 84-97.
- Younger, P. L., a Robins, N. S. (2002), ‘Challenges in the characterization of the hydrogeology and geochemistry of mined ground’, Mine Water Hydrology and Geochemistry, 198, 1-16.
- Younger, P. L., Jayaweera, A., Elliot, A., et al. (2003), ‘Passive treatment of acidic mine waters in subsurface-flow systems: exploring RAPS and permeable reactive barriers’, Land Contamination and Reclamation, 11 (2), 127-13.